Skip to main content

The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications

Abstract

RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.

Graphical Abstract

Introduction

RNA splicing is a fundamental step of gene expression that involves the editing of pre-messenger RNA (pre-mRNA) transcripts to remove non-coding sequences, known as introns, and join coding sequences, called exons. Apart from constitutive splicing which removes introns and assembles remaining exons unbiasedly, alternative splicing (AS) selectively determines exon inclusion or exclusion, engendering multiple mRNA isoforms according to one pre-mRNA. AS is more a rule than an exception as it takes place in about 95% of human genes and gives rise to phenotypic diversity [1, 2]. In cancer, dysregulation of RNA splicing and aberrant AS have emerged as critical factors in tumorigenesis and contribute to the hallmarks of cancer, leading to tumor progression, relapse, and therapy resistance [3, 4].

Apart from linear mRNA transcripts, the biogenesis of circular RNAs (circRNAs) is also inextricably associated with AS. CircRNAs are a class of non-coding RNAs (ncRNAs) characterized by their covalently closed loop structure, which confers stability and resistance to exonuclease degradation. In cancer, circRNAs have been identified as key regulators of gene expression and dysregulation of circRNA expression profiles has been implicated in oncogenesis, metastasis, and therapy resistance across various cancer types [5]. The multifaceted roles of circRNAs in cancer highlight their potential as biomarkers for diagnosis and prognosis, as well as therapeutic targets [6, 7]. The relationship between AS and circRNAs is intricate, as circRNAs themselves act as regulators of AS events by modulating the splicing machinery while AS imposes significant influence on circRNA biogenesis [8]. Consequently, the dynamic interplay between AS and circRNA has profound implications for gene expression and is associated with numerous physiological processes and diseases, including cancer [9]. Moreover, recent advances have revealed that epigenetic and pre-mRNA modification concurrently regulates AS and circRNA biogenesis, which adds to the complexity of this ingenious regulatory network.

In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. By depicting the interaction between circRNAs and the splicing machinery, we elaborate on how AS events dictate the formation of circRNAs, and how these circRNAs, in turn, regulate AS patterns. We also point out epigenetic and posttranscriptional modifications that hinge on the crosstalk between AS and circRNAs. As we navigate through this complex web of interactions, we hope to provide a comprehensive understanding that could pave the way for innovative therapeutic strategies in the fight against cancer.

Alternative splicing

Principle of alternative splicing

Splicing of pre-mRNAs is carried out by a megadalton protein complex termed spliceosome (Fig. 1A). Spliceosome components, including small nuclear ribonucleoproteins (snRNPs) and associated proteins, act sequentially on specific splicing sites and catalyze the removal of the introns, covalently joining the adjacent exons [10,11,12]. Splicing events are determined by the affinity of the splicing site to the spliceosome. Splicing sites with stronger affinity more efficiently recruit spliceosome components and typically lead to constitutive splicing, the generation of dominant mRNA products. AS occurs when “weaker” splicing sites are used for a splicing event, generating mRNA variants.

Fig. 1
figure 1

Alternative splicing and alternative back-splicing. Linear splicing (A) of pre-mRNA removes introns and joins exons to produce mRNA. While constitutive splicing arranges exons and introns unbiasedly, alternative splicing (B) selectively assembles exons and introns to engender multiple mRNA variants corresponding to the same pre-mRNA. Back-splicing (C) shares the same splicing machinery with linear splicing and relies on the inverted complementary sequences (ICSs) in the flanking introns. Similarly, alternative back splicing (D) produces circRNA variants. CircRNA, circular RNA; mRNA, messenger RNA

AS is regulated by both cis-acting motifs within the pre-RNA and trans-acting RNA binding proteins termed splicing factors by attuning the binding affinity between splicing sites and spliceosome. Cis-acting motifs are located in both introns and exons. While most of them serve as binding sites for splicing factors, some sequences also function as complementary elements to influence the spatial structure of pre-mRNAs, thereby regulating AS [13,14,15]. Splicing factors elicit pleiotropic effects on different pre-mRNA transcripts. Although splicing factors of the same family may share certain characteristics, such as heterogeneous nuclear ribonucleoprotein particle (hnRNP) proteins that generally inhibit splicing, the exact effect of splicing factors on an AS event is highly context-specific [16]. Additionally, as RNA binding proteins, splicing factors are also involved in the regulation of other genetic behaviors, such as transcription, nuclear export, and translation-dependent mRNA decay [17].

On the basis of the final structure of mRNA products, AS events can be categorized into five distinct modes (Fig. 1B). Functional AS events lead to the expression of mRNA and protein isoforms. However, in some instances AS events, especially intron retention, result in the introduction of premature stop codons and subsequently cause nonsense-mediated decay (NMD) of the mRNA or production of a truncated protein [18].

Alternative splicing in oncogenesis

Multiple studies have confirmed that alteration in global AS pattern is involved in oncogenesis. Pan-cancer analysis showed that AS events occur up to 30% more frequently in cancerous tissues than normal samples [19]. Hot-spot genes that are alternatively spliced across multiple cancer types are generally associated with fundamental hallmarks of tumor progression such as apoptosis resistance [20]. This includes both the upregulation of oncogenes and the loss of tumor suppressive genes [21, 22]. Additionally, cancer-specific AS events create new exon-exon junctions (also known as neojunctions), which contribute to the generation of neoantigens. AS-derived neoantigens are tumor-specific and likely conservative across cancer types, implying a great potential as targets of immunotherapy [23,24,25]. Apart from protein-encoding alterations, AS of 3′ untranslated regions (UTRs) is also upregulated in cancers and more prevalent in oncogenes [26]. The phenotypic outcome of aberrant AS may also mimic that of germline mutations without changing the genome. For instance, AS of DHX34 accounts for sporadic acute myeloid leukemia (AML) that phenocopies the loss-of-function mutation of DHX34 observed in familial AML cases [27].

Aberrant splicing factors are the major cause of global AS alteration in cancer. Expressional changes, mutation, and posttranslational modifications of splicing factors influence their catalytic activity or binding affinity with target RNAs. Specific splicing factors are most frequently mutated in certain cancer subtypes, and have been thoroughly reviewed elsewhere [4, 17]. While a vast majority of studies characterize how a single gene is modulated by upstream splicing factor alteration to promote cancer progression, the regulatory effects of splicing factors should be viewed as an entirety where splicing factors act on a set of genes to modulate certain aspects of tumor biology. Most splicing factors alter differently and elicit unique effects in different cancer types, but some have been recognized as universal oncoproteins or tumor suppressors. Serine/arginine-rich splicing factor 1 (SRSF1), as a representative, is upregulated in breast, colon, lung, and pancreatic cancer and uniformly promotes tumor progression [28,29,30]. Moreover, AS of splicing factors was also reported as a common feature across cancer types, adding to the complexity of the AS regulatory network [31]. DAP3, an oncogene overexpressed across cancer types, alters the AS pattern of multiple splicing factors, thereby coordinately modulating the splicing of downstream genes via their respective splicing factors to promote cancer progression [32].

Alterations of spliceosomal components were also seen in cancers. As a representative example, hotspot mutation of U1 spliceosomal small nuclear RNA (snRNA) (r.3a > g) is present in about 50% of Sonic hedgehog medulloblastomas [33]. This leads to a significant increase of alternative 5′ cryptic splicing events, including those concerning tumor suppressor genes, oncogenes, and hedgehog pathway effectors. In addition, inhibition of U1 snRNP function not only causes widespread premature transcription termination but also boosts cancer migration and invasion in vitro, suggesting a potent tumor suppressive role of U1 snRNP [34]. Attuning core spliceosome components is probably a potent measure to fix aberrant AS in cancers but must be applied with caution as it may also interfere with constitutive splicing in general.

Circular RNA

Biogenesis of CircRNA

CircRNA is generated through back-splicing (Fig. 1C). Canonical splicing joins an upstream 5′ splice donor site to a downstream 3′ splice acceptor site, resulting in the removal of the intron between adjacent exons. In cases of back-splicing, a downstream splice donor is joined to an upstream splice acceptor across one or more exons, forming a circular structure. Back-splicing utilizes the same spliceosome machinery as AS and competes with the linear splicing of cognate pre-mRNA [12, 35], but the efficiency of back-splicing is low compared with that of linear splicing owing to steric effects [36]. Biogenesis of circRNA is therefore mainly modulated by the kinetics of back-splicing.

Back-splicing is also regulated by cis-acting RNA sequences and trans-acting protein factors. Cis-acting elements play a prominent role in modulating the steric conformation of RNA molecules undergoing back-splicing. For instance, when flanked by the same intronic sequences, longer exons flavor circRNAs formation more than shorter ones for better feasibility of circular structure [12, 37]. Intronic complementary sequences (ICSs) in flanking introns play a prominent role in promoting circRNA biogenesis. ICSs at flanking introns base-pair to one another to bring distal splice sites into proximity, facilitating back-splicing [14, 37]. It has been reported that upon spliceosome inhibition, circRNAs with more distinct repeat sequences and more ICS motifs gain an expressional advantage [38]. Inverted repeated Alu (IRAlu) element is the most common ICS in humans and contributes the most to circRNA biogenesis [39]—trans-acting RBPs not only by binding to flanking intron but also by recognizing paired ICSs to regulate back-splicing. DExH-box helicase 9 (DHX9), a nuclear RNA helicase, unwinds IRAlu pairs to inhibit circRNA biogenesis [40].

Since most circRNAs rely on ICSs to form circular structures, the majority of circRNAs contain exons of their cognate mRNA or in some cases, introns retained between exons [41]. Rarely, lariat intermediate structures produced during pre-mRNA splicing give rise to circular intronic RNAs (ciRNAs) by the action of debranching enzymes [42].

The biogenesis of circRNA is better characterized concerning AS events. On the one hand, back-splicing itself can be viewed as an unusual type of AS event with unique circular products. On the other hand, all four canonical AS patterns, including the inclusion of cassette exons, intron retention, alternative 5′ splicing, and alternative 3′ splicing, have been identified in the back-splicing of multiple-exon circRNAs [8] (Fig. 1D). Alternative back-splicing events were identified for about 84% of circRNAs in a tissue-specific manner [43, 44], which is probably a result of tissue-specific expression of splicing regulatory factors. Further characterization of how the alternative back-splicing patterns are shifted in a particular disease context will provoke and expand current knowledge of circRNA-related pathogenesis.

Molecular mechanism of CircRNA functions

CircRNAs are generally stable but weakly expressed compared with linear RNAs [45]. Owing to their circular structure, circRNAs are resistant to linear RNA decay machinery [36]. Though back-splicing takes place in the nucleus, exonic circRNAs are primarily localized in the cytoplasm by actions of nuclear export pathways [46, 47]. Intron-containing circRNAs, however, are mainly restrained in the nucleus to modulate transcription [41, 42].

In the cytoplasm, circRNAs interact with RNAs or proteins to exert their biological functions. Some circRNAs containing microRNA (miRNA) response elements (MREs) can act as competing endogenous RNAs (ceRNAs) to sponge miRNAs, sequestering miRNAs from binding to their target mRNAs [48]. While miRNA sponging is the most frequently presumed function of circRNAs, the majority of circRNAs contain fewer MREs than is expected [46], and the abundance of circRNAs should be taken into consideration when assessing their potential as ceRNAs [49, 50]. Apart from miRNAs, circRNAs can also interact with mRNAs to impact gene expression output [51]. CircRNAs engage with RBPs to modulate their behaviors. They can either act as scaffolds to recruit different proteins into proximity or function as protein sponges to block their function [52]. It is worth noting that a given circRNA may elicit composite regulatory roles in a certain context, and may elicit different physiological effects in a context-dependent manner.

Though circRNAs are classified as non-coding RNAs, emerging evidence has shown that circRNAs can serve as translational templates and the products of circRNA translation have important physiological and pathological correlations. Since circRNAs do not have a 5′ cap, internal ribosome entry sites (IRES) are required for circRNAs to undergo cap-independent translation [53]. Further study identified short IRES-like elements that also permit circRNA translation, expanding the range of possible circRNA translation events [54]. Furthermore, N6-methyladenosine (m6A) modification on circRNAs drives translation initiation by actions of m6A reader YTHDF3 and transcription factor eIF4G2 [55, 56]. The abundance of circRNA-produced peptides is limited by the low efficiency of cap-independent translation [57], but the distribution is characterized across multiple organs with implications of physiological importance [58]. Most protein products encoded by circRNA are unlikely to exhibit complicated biological functions as limited by their length and structural complexity but they may serve as potent agonists or antagonists once they contain corresponding conformational characteristics or binding sites.

Regulation of CircRNA biogenesis in oncogenesis

Dysregulation of circRNA expression has been observed across cancer types. The global circRNA abundance is generally reduced in cancer cells owing to their rapid proliferation and low back-splicing efficiency [59, 60]. As back-splicing can happen in a co-transcription fashion, altered transcriptional status also influences circRNA biogenesis in cancer cells [61, 62]. Previous studies indicated that altered linear RNA synthesis modulates the relative amounts of linear RNA and circRNA. When the concentrations or activities of core spliceosome components are under restrictions, the full spliceosome packages across an exon owing to the limited transition from cross-exon interactions to cross-intron interactions, which induces the generation of circRNAs by back splicing [61]. Nevertheless, a plethora of studies have described the increased abundance of a given circRNA and its functional relevance in cancers. For example, ciRS-7, the first circRNA demonstrated as a miRNA sponge, is upregulated in multiple cancers and predicts poor prognosis [63,64,65].

Proteins encoded by circRNA may also participate in cancer progression. For example, circular E-cadherin encoded protein activates epidermal growth factor receptor (EGFR) independent of EGF to maintain glioma stem cell oncogenicity [66]. Thus, regulation of cancer-related circRNA may also proceed through translation, independent of its biogenesis. In HER2-positive breast cancer, circβ-TrCP encodes a truncated 343-amino acid peptide which binds to NRF2 and competitively blocks β-TrCP-mediated NRF2 degradation to promote trastuzumab resistance. In this case, the activity of circβ-TrCP is modulated by eIF3j transcriptionally without affecting circβ-TrCP biogenesis [67]. Similar to neo-junctions generated in AS events, back-splicing sites also impart immunogenicity to circRNA-produced proteins. A recent study illustrated that noncanonical translation of circRNAs can drive efficient antitumor immunity, implying the potential of utilizing tumor-specific circRNAs and their products as immunotherapeutic targets [68].

When investigating the biological function of circRNAs in cancers, the presence of stromal and immune components in the tumor microenvironment (TME) should not be ignored. As a representative example, the initial report on ciRS-7 suggested that ciRS-7 exerted oncogenic activity by sponging miR-7 inside cancer cells [63]. However, further study has found that ciRS-7 was not expressed in the cancer cells of several different adenocarcinomas and that the upregulation of ciRS-7 in tumors compared with adjacent normal tissues was attributed to its high expression in stromal cells in the TME [69]. The mechanism of ciRS-7-mediated oncogenesis should therefore be revised. Moreover, circRNAs packed into exosomes serve as an important intracellular crosstalk between different cellular components in the TME [70].

Epigenetic and post-transcriptional modification concurrently regulates alternative splicing and CircRNA biogenesis in cancer

The interplay between AS events and circRNA in cancer has a rather straightforward interpretation, where AS as an upstream genetic event modulates the biogenesis of circRNAs to subsequentially influence downstream signal transduction in cancer cells, and circRNAs as signal molecules regulate the AS process of oncogenes to alter cellular behaviors. Apart from circRNAs and the AS machinery that compose the intricate regulatory network, epigenetic and posttranscriptional modifications controlling the transcriptome also concurrently regulate alternative splicing and circRNA biogenesis in cancers Fig. 2. Thus far, histone modification and m6A modification on pre-mRNAs have been revealed to intermediate the interaction between AS events and circRNAs Fig. 3.

Fig. 2
figure 2

Epigenetic and posttranscriptional modifications concurrently modulating alternative splicing and circRNA biogenesis. Epigenetic modifications such as histone modification and DNA methylation regulates chromatin configuration to alter the accessibility of DNA, therefore influencing transcriptional activity and co-transcriptional splicing. Besides, histone or DNA methylation remarks create or shed binding sites of DNA binding proteins or the transcription machinery. Similarly, m6A modifications alter RNA structures or create RBP binding sites to regulate alternative splicing and circRNA biogenesis. CircRNA, circular RNA; CTCF, CCCTC-binding factor; METTL3/14, methyltransferase like 3/14; mRNA, messenger RNA; SRSF3/10, serine/arginine-rich splicing factor 3/10; YTHDF3, YTH N6-methyladenosine RNA binding protein F3

Fig. 3
figure 3

Regulation of circRNA biogenesis by RBPs. The majority of circRNAs originate form exons with ICSs or specific binding motifs in their flanking introns. Certain RBPs, such as ESRP1, recognizes its binding motifs to facilitate circularization of exons independent of other ICSs, such as Alu elements. Others, such as QKI and EIF4A3, on the other hand, attach to and stabilize formed ICS pairs. On the contrary, RNA helicase, such as ADAR1, unwinds ICS pairs to inhibit back-splicing and promotes linear splicing of pre-mRNAs. ADAR1, adenosine deaminases acting on RNA 1; circRNA, circular RNA; EIF4A3, Eukaryotic translation initiation factor 4A3; ICS, inverted complementary sequence; mRNA, messenger RNA; QKI, quaking

Histone modification

Histone modifications comprise a major part of epigenetic regulation. The fundamental unit of chromatin is the nucleosome, which consists of a central histone octamer wound by approximately 1.75 turns of DNA. Modifications on the core or the tail of histones affect the affinity of histone-DNA binding and hence impose direct or indirect effects on various DNA-templated processes [71,72,73].

Histone modifications emerge as a major regulator of AS events. Certain histone marks, such as H3-K36me3 and H3-K27me2, are identically enriched around exon splicing sites independent of nucleosome distribution and transcriptional activity [74]. Further study corroborated that distinctive histone modification signatures correlate with the AS outcome in a set of human genes, and histone marks possibly affect splicing outcomes by influencing the recruitment of splicing regulators via chromatin-binding protein [75]. Additionally, genome-wide screening of splicing-associated chromatin signatures suggested that histone modification signatures likely act in a combinatorial and position-dependent way and fine-tune the level of splicing variants rather than switching the splicing sites in a binominal fashion [76]. Identification of key histone-modifying enzymes or associated adaptor proteins is critical to resolving the intricate regulatory network between histone modifications and AS events. For instance, CHD8 suppression leads to a significant reduction in histone H3-K36me3 level, which correlates with altered alternative splicing patterns in autism spectrum disorders [77]. Intriguingly, a large subset of CHD8-related AS events are implicated in genes tagged with “regulation of RNA splicing,” and hnRNPs, especially hnRNPL, contribute to such alteration by interacting with CHD8. Therefore, the detailed mechanism by which histone modifications affect AS events requires further exploration and should be carefully distinguished from the global alteration of AS-related genes elicited by histone modifications.

Altered histone modification patterns and correlated AS events induce functional alterations in cancer cells. Dynamic changes in H3-K27ac and H3-K27me3 levels right at splicing sites are necessary and sufficient to induce AS events observed during epithelial-mesenchymal transition (EMT) with functional relevance recapitulating important aspects of EMT, such as cell motility and invasiveness [78]. Similarly, H3-K79me2 is involved in mediating exon-skipping events and interfering with DOT1L1, the sole H3-K79 methyltransferase, which impedes the proliferation of AML cells [79]. Small molecule inhibitors to selectively target the catalytic activity of histone-modifying enzymes have been applied to advanced tumor therapies in clinical trials [80, 81]. Furthermore, inhibiting H3-K9 methyltransferase SETDB1 leads to overexpression of newly-formed exon-TE splicing junctions in cancer cells to stimulate antitumor immunity, opening possibilities for tumor-targeting vaccination and novel immunotherapeutic targets [82].

Apart from linear splicing events, histone modifications are also implied in back-splicing events. Global histone modification pattern has been implied in circRNA biogenesis. Machine learning models based on histone modification patterns exhibited high accuracy in predicting circRNA expression in different cellular contexts [83]. Besides, circRNA abundance strongly correlates with response to histone acetylation inhibitors of cancer cells [84]. Alterations in specific histone modification sites may also induce alterations in corresponding circRNA biogenesis. In hepatocellular carcinoma, histone writer EP300 and WDR5 bind to the SOD2 promoter and trigger H3-K27ac and H3-K4me3 modification, respectively, which further activates circSOD2 expression [85]. EP300-mediated H3-K27ac also promotes the biogenesis of circCCAR1 in hepatocellular carcinoma cells [86]. Moreover, the expression of circRERE is facilitated by EP300, both of which are downregulated in colorectal cancer, but the corresponding histone modification signature has not been identified [87]. How aberrant histone modification pattern alters circRNA transcriptome and subsequentially induce phenotypic alterations in cancer requires further investigation.

N6-methyladenosine modification

In eukaryotes, m6A modification is the most common RNA post-transcriptional modification, which involves the dynamic methylation of the sixth nitrogen (N) atom of RNA adenylate [88]. m6A modification of linear RNA is mainly carried out by the RNA methyltransferase complex, with methyltransferase-like-3 (METTL3) as the catalytic core and METTL14 as an RNA-binding platform [89].

Though m6A is not presupposed for most splicing events [90], some m6A readers are AS events and back-splicing that are functionally important. For instance, YTHDC1 promotes exon inclusion in targeted mRNAs through recruiting pre-mRNA splicing factor SRSF3 while blocking SRSF10 from accessing its binding regions [91]. Similarly, YTHDC1 and METTL3 are also reported to direct back-splicing events and regulate circRNA biogenesis [56]. Additionally, m6A also remodels RNA structure to alter its access to canonical splicing factors thereby influencing the choice of splicing sites [92].

Growing evidence revealed the essential role of m6A machinery in oncogenesis, progression, and therapeutic resistance [93,94,95]. By interacting or synergizing with other RBPs, m6a readers modulate circRNA biogenesis and thereby exert pleiotropic effects across various cancer types. In rhabdomyosarcoma, YTHDC1 and RNA helicase DDX5 serve as joint mediators of the back-splicing reaction, which promotes the generation of a shared subset of circRNAs thereby influencing cellular proliferation [96]. Likewise, the biogenesis of circTET2 is attuned by YTHDC1 along with splicing factor RBMX in chronic lymphocyte leukemia cells [97]. Subsequently, circTET2 interacts with HNRNPC to modulate downstream lipid metabolism and proliferation of chronic lymphocyte leukemia cells through the mTORC1 signaling pathway. By marking m6A sites in flanking reverse complementary sequences, METTL3 induces circ1662 in colorectal cancer, which enhances colorectal cancer invasion and migration through YAP1 and SMAD3 [98].

Hence, targeting m6A machinery therapy emerges as a potential approach for cancer treatment. Fusaric acid, a mycotoxin from Fusarium species, affects decreasing the expression of p53 by downregulating YTHDF1, YTHDC2, and YTHDF3 [99]. The bioactive small molecules extracted from natural sources exhibit unique chemical structures and diverse biological activities, which attributes natural products as potential sources for identifying novel therapeutic agents targeting m6A machinery.

RNA binding proteins act in trans to modulate circRNA biogenesis

As highlighted earlier, RBPs are pivotal regulators of alternative splicing, including back-splicing events that govern circRNA biogenesis. In the context of circRNA formation, many RBPs act as trans-acting factors, influencing splice site selection and back-splicing efficiency. While most RBPs primarily function as transcription factors, recent evidence points to the involvement of RBPs with other roles—such as RNA base-pair editing proteins—in circRNA biogenesis. This diversity in RBP function underscores their multifaceted contributions to the regulation of RNA processing, linking alternative splicing and circRNA biogenesis in both normal cellular processes and cancer-related dysregulation.

Adenosine deaminases acting on RNA

Adenosine deaminases acting on RNA (ADARs) protein family, including ADAR1 and ADAR2, participate in converting adenosines to inosines upon dsRNA binding [100, 101]. Differentially expressed ADARs and their aberrant A-to-I RNA editing are implicated in multiple cancer types [102,103,104]. Furthermore, IRAlu elements appear to be the most frequent and widespread targets of ADAR editing [105, 106], suggesting that ADARs hold great potential as potent circRNA regulators in cancer cells.

Previous studies deemed ADARs as putative circRNA inhibitors as they disrupt the formation of double-stranded RNA to repress Alu-mediated circRNA biogenesis and facilitate linear mRNA maturation [5, 107]. For instance, the androgen receptor could upregulate ADAR1 p110 to inhibit the production of circARSP91 in hepatocellular carcinoma and promote the growth of hepatocellular carcinoma [108]. ADAR2 was also suggested to inhibit circHif1a biogenesis and then allows miR-195a-3p to interfere with P-glycoprotein translation in breast cancer cells [109]. However, it has been recently revealed that the regulation of ADARs on circRNA biogenesis is bidirectional. Mechanistically, A-to-I editing can replace A: C mismatches with I(G)-C pairs or create I(G). U wobble pairs, which enables a more perfect dsRNA secondary structure and potentially facilitates circRNA production [110]. Beyond that, editing of ADARs may also create or modify auxiliary cis-acting elements for splicing factor binding, exemplified by the binding of PTBP1 to the flanking introns of circCHEK2 [110]. Despite that, the mechanisms determining the direction of circRNA regulation by ADARs remain unclear. Additionally, co-depletion of ADAR1 and DHX9 leads to a synergistic effect on circRNA biogenesis, implying extensive crosstalk between RBPs to be discovered [40].

Quaking

Quaking (QKI), a KH domain-containing RNA binding protein, has been found to contribute to multiple malignant behaviors as a splicing factor [111]. Furthermore, QKI has been proposed as a master regulator of circRNA biogenesis. During the EMT process, QKI regulates not only pre-mRNA splicing but also the production of over one-third of abundant circRNAs [112]. The addition of QKI motifs alone is sufficient to induce de novo circRNA formation from linear transcripts, highlighting the potency of QKI as a regulator of back-splicing [112].

The activity of QKI is associated with cancer progression and therapeutic resistance. QKI can bind the introns of hsa_circ_0007919 pre-mRNA to increase the expression of hsa_circ_0007919, which enhances DNA damage response and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma [113]. Apart from hsa_circ_0007919, QKI also promotes circARFGEF2 biogenesis by binding the specific motifs and neighboring reverse complement sequences in intron 3 and 6 of circARFGEF2 pre-mRNA [114]. CircARFGEF2 facilitates JAK2-STAT3 signaling by sponging miR-1205 to elicit lymph node metastasis in KRAS-mutant pancreatic ductal adenocarcinoma [114]. These findings indicate that QKI emerges as a potential therapeutic target to prevent pancreatic cancer progression. In esophageal cancer, QKI upregulates the expression of circBCAR3, which facilitates oncogenesis and metastasis of esophageal cancer [114]. In estrogen receptor-positive breast cancer, circSFMBT2 upregulated by QKI orchestrates ERα activation to drive tamoxifen resistance [115]. In response to radiation stimulation, TR4 in prostate cancer could transcriptionally boost QKI expression to increase circZEB1 levels, which then sponges the miR-141-3p to increase the expression of its host gene ZEB1, thereby strengthening resistance to radiotherapy [116]. In NSCLC, TGF-β treatment induces EMT and metastasis through QKI reduction, which decreased circ6834 expression [117].

However, in other contexts, QKI also exerts tumor-suppressive function and is recurrently repressed [118]. The expression of QKI-5 is reduced in hepatocellular carcinoma, which is responsible for the downregulation of circZKSCAN1 [119]. CircZKSCAN1 blocks the interactions between FMRP and CAR1 mRNA by binding FMRP competitively. Consequently, the Wnt/β-catenin signaling pathway is suppressed, which facilitates the hepatocellular carcinoma growth [119]. Downregulated QKI in non-small cell lung cancer contributes to the suppression of circNDUFB2. Functionally, circNDUFB2 inhibits non-small cell lung cancer progression through destabilizing IGF2BPs and activating antitumor immunity [120]. Moreover, in osteosarcoma, QKI inhibition leads to low circROCK1-E3/E4 expression, which suppresses osteosarcoma proliferation and migration by upregulating PTEN [121]. In addition, upregulation of QKI5 in cardiomyocytes significantly reversed doxorubicin-induced cardiotoxicity through upregulation of multiple circRNAs including circTTN, which is also implied in multiple cardiomyopathies [122,123,124]. Therefore, therapeutic attempts targeting QKI should further evaluate cardiac adverse response and rely on deeper delving into QKI function in different contexts.

Eukaryotic translation initiation factor 4A3

Eukaryotic translation initiation factor 4A3 (EIF4A3) is a core component of the exon junction complex (EJC). As an entirety, the EJC plays an essential role in suppressing aberrant AS events to maintain transcriptome integrity and facilitates various genetic processes including mRNA transport and NMD [125,126,127,128]. Beyond that, EIF4A3 acts as a pre-mRNA splicing factor to modulate AS with robust implications for oncogenesis [129, 130].

Numerous reports have illustrated that EIF4A3 regulates back-splicing to regulate circRNA biogenesis (Table 1). Generally, EIF4A3 modulates circRNAs to impose pleiotropic effects on cancer cells with functional significance. Part of them mediates major oncogenic pathways to affect cancer progression. In breast cancer, EIF4A3 promotes circIKBKB biogenesis, which activates NF-κB signaling to induce osteoclast differentiation and bone metastasis [131]. Blocking EIF4A3 pharmaceutically inhibits the circIKBKB biogenesis and bone-metastasis of breast cancer, which provides a novel therapeutic target for breast cancer treatment [131]. EIF4A3 also promotes the biogenesis of circSEPT9 which facilitates the oncogenesis and progression of triple-negative breast cancer by activating activates STAT3 signaling [132]. EIF4A3 promotes the biogenesis and cytoplasmic export of circARHGAP29, which increases the stability of LDHA and c-Myc mRNA to enhance the glycolytic metabolism and confer docetaxel resistance in prostate cancer [133]. Additionally, increased circASAP1 by EIF4A3 boosts the expression of NRAS via sponging miR-502-5p to promote proliferation and temozolomide resistance of glioblastoma [134]. In osteosarcoma, EIF4A3 binds to one downstream flanking sequence of PRKAR1B pre-mRNA and promotes back-splicing of circPRKAR1B. circPRKAR1B subsequentially promotes osteosarcoma progression by modulating the expression of FZD4 and hyperactivating Wnt signaling [135]. The binding of EIF4A3 to the flanking sequence may also prevent back-splicing of certain tumor-suppressive circRNAs. For instance, EIF4EA3 suppresses circ0009092 expression in colorectal cancer cells. Circ0009092 elevates NLK expression via sponging miR-665, which inactivates the Wnt/β-catenin signaling pathway and regulates STAT3 signaling to inhibit macrophage in the TME [136]. EIF4A3 also suppresses the cyclization of circPTEN1 by directly binding to its flanking region in colorectal cancer. Mechanistically, circPTEN1 is capable of disrupting Smad signaling and consequently suppresses the EMT process [137]. Moreover, circ0087429 can reverse EMT and inhibit the progression of cervical cancer by upregulating OGN expression, which is suppressed by EIF4A3 [138].

Table 1 CircRNAs modulated by EIF4A3

While the majority of studies depicted the oncogenic potentials of EIF4A3, it has also been reported that EIF4A3 regulates circRNAs to exert tumor-suppressive effects. In hepatocellular carcinoma, circGLIS2 inhibits EMT and cellular proliferation, migration, and invasion [139]. It is found in this study that upregulation of EIF4A3 elevated circGLIS2 expression, but as the results also demonstrated that EIF4A3 promotes the transcription of the cognate GLIS2 mRNA expression, whether EIF4A3 directly modulates back-splicing to promote circGLIS2 biogenesis remains elusive and requires further validation. In NSCLC, EIF4A3 was found to decrease the expression of circ_0007386, an oncogenic circRNA, by binding to its cognate CRIM1 pre-mRNA [140]. Intriguingly, under hypoxic conditions, increased YAP1 binds to EIF4A3, which leads to the displacement of EIF4A4 from CRIM1 pre-mRNA and facilitates the biogenesis of circ_0007386 [140].

Furthermore, some EIF4A3-modulated circRNAs exhibit immunomodulatory properties and shape the TME. EIF4A3 and E1A binding protein p300 (EP300) synergistically promote the biogenesis of circCCAR1 in hepatocellular carcinoma. Exosomal circCCAR1 is taken in by CD8+ T cells in the TME and disables CD8+ T cells by stabilizing the PD-1 protein [86]. Though a clear mechanism remains elusive, EIF4A3-induced circRHBDD1 is also upregulated in hepatocellular carcinoma patients and predicts poor response to anti-PD-1 treatment [141]. In addition, EIF4A3 promotes the formation of circSERPINE2 in breast cancer, which is shuttled to tumor-associated macrophages through exosomes and enhances the secretion of Interleukin-6, leading to increased proliferation and invasion of breast cancer cells [142].

The interplay between the m6A modification machinery adds to the complexity of EIF4A3-based regulatory pathways. EIF4A3 deposition and concurrent EJC assembly are involved in controlling m6A modification via steric blockade of METTL3, and depletion of EIF4A3, leads to increased m6A modification at sites close to exon-exon junctions within mature mRNA [143]. Moreover, circRNAs induced by EIF4A3 impose bidirectional effects on m6A modification. EIF4A3-induced circ0001187 promotes proteasomal degradation of METTL3, suppressing AML progression [144]. However, circ0008399, elevated by EIF4A3 in bladder cancer, binds WTAP to promote the formation of the WTAP-METTL3-METTL14 m6A methyltransferase complex, which stabilizes TNFAIP3 mRNA in an m6A-dependent manner to promote cisplatin resistance [145]. Similarly, circRHBDD1 recruits the m6A reader YTHDF1 to PIK3R1 mRNA and accelerates the translation of PIK3R1 in an m6A-dependent manner [141]. Therefore, instead of measuring how EIF4A3 affects the global m6A modification level, characterizing the m6A modification status of genes with functional relevance may better reflect its role in cancers.

Notably, EIF4A3 also serves as a transcription factor and a subset of endogenous circRNAs are subject to EIF4A3-mediated transcription, some of which even express a full-length intact protein, such as β-catenin [146]. Therefore, EIF4A3 and other EJC components possibly serve as a potent circRNA regulator that remains to be further characterized.

Epithelial splicing regulatory protein 1

Epithelial splicing regulatory protein 1 (ESRP1) is an epithelial cell-specific RBP that contributes to the regulation of AS and translation AS events elicited by ESRP1 are actively engaged in organogenesis by modulating the transition between mesenchymal and epithelial cellular states [147]. As is expected, ESRP1 also orchestrates AS events in multiple cancer types and is suggested as a tumor-suppressive splicing factor that represses EMT to restrain malignancy [148, 149]. Current evidence has expanded its role in circRNA biogenesis. ESRP1 promotes the formation of circDOCK1(2–27) by binding and splicing a GGU-containing repeat region in intron 1 during EMT of breast cancer cells. CircDOCK1(2–27) represses cell motility and migration by diverting transcripts from DOCK1 mRNA to circRNA [150]. Moreover, ESRP1 is involved in the biogenesis of circ-TNPO3, which significantly suppresses the proliferation and migration of clear cell renal cell carcinoma cells [151]. In hepatocellular carcinoma, ESRP1 was identified to bind to the pre-mRNA of PTPN12, thereby fostering the generation of circPTPN12 to suppress tumor progression [152]. Moreover, ESPR1 also promotes the biogenesis of circBIRC6 to control the molecular circuitry in human embryonic stem cells, which regulates cell pluripotency and early lineage differentiation [153]. However, it has been reported that ESPR1 and pre-mRNA methylation of NOL10 jointly inhibit the biogenesis of circNOL10 to promote the development of lung cancer [154]. Similarly, ESRP1 has been suggested to aggravate prostate cancer progression and independently predicts poor prognosis of prostate cancer patients [155,156,157]. The contradictive effects of ESPR1 in different cancer types possibly stem from the distinctive expressional context of the original tissue, which should be taken into consideration when designing ESPR1-based therapies.

Heterogeneous nuclear ribonucleoprotein particle proteins

As mentioned above, hnRNP is a class of crucial splicing factors, which is implicated in the diverse RNA transcript and protein biogenesis across the progression of multiple cancer types. Among hnRNP family members, HNRNPL is most frequently implied in circRNA alteration in cancers. Genome-wide CRISPR screens have identified its essential role in the growth of prostate cancer by regulating alternative RNA splicing and circular RNA formation [158]. In bladder cancer, HNRNPL promotes the circFAM13B biogenesis through pre-mRNA back-splicing, which competitively binds to the KH3-4 domains of IGF2BP1 and subsequently decreases the binding of IGF2BP1 to the PKM2 3′UTR; thereby weakening PKM2 mRNA stability and reversing glycolysis-induced acidic tumor microenvironment [159]. In hepatocellular carcinoma, HNRNPL promotes circARHGAP35 biogenesis to facilitate the formation of an oncoprotein [160]. The interactions of circARHGAP35 oncoprotein and TFII-I protein in the nucleus promote cell progression of hepatocellular carcinoma [160]. These findings indicate the diverse roles of HNRNPL and its isoforms in RNA processing, alternative splicing, and circular RNA biogenesis in cancer pathogenesis. Disruptions of the splicing machinery of HNRNPL emerge as a potential approach to inhibiting cancer progression.

Apart from HNRNPL, other hnRNP members are also proven as circRNA regulators in cancer. HNRNPM preferentially binds to GU-rich elements in long-flanking proximal introns to prevent aberrant exon inclusion and back-splicing events. Loss of HNRNPM results in generally increased circRNA formation and inhibits prostate cancer cell growth [161].

Fused in sarcoma

Fused in sarcoma (FUS) is a classical regulator involved in DNA replication, translation, and repair [162,163,164], which plays a critical role in cell proliferation and tumor progression [165]. Recently, several studies investigated the effect of FUS on the circRNA biogenesis in multiple cancer types. In triple-negative breast cancer, FUS facilitates the cyclization of circTBC1D14 by binding the downstream flanking sequence of circTBC1D14, which promotes the progression and aggressiveness of triple-negative breast cancer in vivo [166]. Moreover, hypoxic conditions can increase the level of FUS-circTBC1D14-associated stress granules in the cytoplasm. The circTBC1D14 is mostly increased in triple‐negative cell lines and associated with poor prognosis of breast cancer [166]. In renal cell carcinoma, FUS contributes to converting fibroblasts to cancer-associated fibroblasts by the biogenesis of circEHD2 [167]. CircEHD2 and YAP bind to the SOX9 promoter and activate the expression SOX9 with the help of YWHAH, and consequently facilitate the proliferation and migration of renal cell carcinoma [167]. In colorectal cancer, FUS binds to specific motifs and Alu elements in the introns flanking the exons of circRHOBTB3 along with ADARB2 to promote the biogenesis of circRHOBTB3 [168]. CircRHOBTB3 is a novel metastasis-related factor in colorectal cancer by binding to the functional RNA-binding protein human antigen R (HuR). The interaction between circRHOBTB3 and HuR promotes HuR degradation by accelerating the β-Trcp1-mediated ubiquitination of HuR, which represses PTBP1-mediated metastasis in renal cell carcinoma [168].

NOVA2

NOVA2 is a neuron-enriched splicing factor that plays a crucial role in the development of the central nervous system and synaptic plasticity [169, 170]. Mechanistically, NOVA2 recognizes clusters of tetranucleotide YCAY motifs and recruits CPSF and SYMPK to facilitate the early binding of spliceosome components [171]. Apart from its regulatory role in AS events, NOVA2 globally promotes circRNA biogenesis in the developing brain [172]. Linear splicing and back-splicing are likely modulated by NOVA2 in parallel, as NOVA2-regulated circRNAs and AS events show little overlap [172]. In glioma, circU2AF1 upregulates NOVA2 by sponging hsa-miR-7-5p to aggravate malignancy and predict poor prognosis of patients [173]. Beyond its role in the central nervous system, NOVA2 also participates in the regulation of endothelial function [174, 175]. Current studies have corroborated the oncogenic potential of NOVA2 by stimulating angiogenesis in different malignancies [176,177,178]. Remarkably, multiple studies have reported a specific circRNA regulates lung cancer progression through NOVA2, but the exact AS alteration or other possible molecular alterations related to NOVA2 have not been thoroughly examined in the context of lung cancer [179,180,181].

Notably, each cicrRNA may have distinct cancer-related functions in specific cancer types. We should note that the contribution of splicing factor-regulated circRNA biogenesis to cancer is unlikely to be attributed to a single signaling pathway. Further studies should concentrate on the crosstalk between different splicing factors and circRNAs in specific cancer types.

CircRNAs regulate alternative splicing of cancer-related genes

CircRNAs modulate splicing factor functions

CircRNAs modulate AS events mainly through their interactions with splicing factors (Fig. 4). The binding between circRNA and splicing factors can directly influence the regulatory function of the corresponding splicing factor. CircRNAs may serve as decoys targeting splicing factors to block their effects on AS. In gastric cancer, circURI1 binds and sequesters hnRNPM to modulate AS of genes involved in the process of cell migration, thus suppressing GC metastasis, demonstrated by the fact that circURI1 influenced exon inclusion or exclusion in contrast to hnRNPM [182]. CircRAPGEF5 confers ferroptosis resistance to endometrial cancer cells through the interaction with RBFOX2. CircRAPGEF5 can bind to the Fox-1 C-terminal domain of RBFOX2 and induce specific exon exclusion of TFRC by obstructing the binding of RBFOX2 to pre-mRNA [183]. The binding of circRNA could compete with the target pre-mRNA of splicing factors. For instance, circRPAP2 can bind to the oncogenic splicing factor SRSF1 to compete with the binding between SRSF1 and PTK2 pre-mRNA, thereby attenuating SRSF1-mediated alternate splicing of PTK2 and reduce its expression in breast cancer [184]. Alterations elicited by circRNA binding could also gain functional advantage for certain splicing factors owing to possibly conformational changes. In gallbladder cancer, circFOXP1 binds with PTBP1 and enhances the capacity of PTBP1 to bind to PKLR mRNA [185]. PTBP1 can bind to the 3′UTR region and coding region of PKLR mRNA to protect PKLR mRNA from NMD [186].

Fig. 4
figure 4

CircRNAs modulate splicing factor functions. CircRNAs exert their molecular functions to regulate splicing factor functions and alternative splicing. The binding between circRNA and splicing factors can either facilitate the assembly of protein complexes (A) or sequester their function by competing with target RNAs (B). In addition, such binding may also influence the stability of splicing factors by altering their accessibility to protein degradation machineries (C). As miRNA sponges (D), circRNAs also regulate the expression of splicing factors. As some splicing factors also participates in other RBP functions such as nonsense-mediated decay and nuclear export (E), the interaction between splicing factors and circRNAs carries even greater significance. CircRNA, circular RNA; HNRNP, heterogeneous nuclear ribonucleoprotein particle; mRNA, miRNA, microRNA; messenger RNA; RBP, RNA binding protein; SRSF1, serine/arginine-rich splicing factor 1, Ub, Ubiquitin

CircRNAs as protein scaffolds can recruit RBPs and thereby assemble functional complexes or bring their targets into proximity. In clear renal cell carcinoma, circPPAP2B is significantly upregulated compared with adjacent normal tissue and promotes cancer metastasis [187]. CircPPAP2B facilitates HNRNPC nuclear translocation in an m6A-dependent manner and recruits PTBP1 and HNPNPK as a complex to regulate pre-mRNA splicing. Consequent AS events include the skipped exon 8 of CD44, a critical cell-surface glycoprotein involved in cell adhesion and metastasis. In gastric cancer cells, hsa_circ_0000437 binds SRSF3 and inhibits PDCD4 to promote cell proliferation, invasion, migration, and apoptosis [188]. It is proposed that hsa_circ_0000437 recruits SRSF3 and possibly forms a triplet complex PDCD4 mRNA and inhibits the translation of the tumor suppressor gene PDCD4. However, such a mechanism requires further validation as the original study provided scarce information about the putative complex. Moreover, according to a previous report, SRSF3 not only regulates the alternative splicing pattern of PDCD4 pre-mRNA but also directly modulates its translational efficiency in the cytoplasm [189]. This highlights the fact that circRNA functions should be investigated with caution and resolve possible protein-RNA and protein–protein interactions.

The stability of splicing factors can be regulated by circRNAs by exposing or shielding target spites of protein degradation machinery. In lung cancer cells, circZFR protects HNRNPLL from degradation by ubiquitination to regulate AS of target genes, such as myosin IB, and subsequently activates the AKT-mTOR pathway to facilitate oxidative phosphorylation [190]. Conversely, circSCAP directly binds to SF3A3 to facilitate its ubiquitination, which enhances the expression of MDM4 exon 6 skipping transcripts to finally activate downstream p53 signaling in non-small cell lung cancer [191].

The interaction between circRNAs and splicing factors does not necessarily affect splicing events corresponding to a certain phenotypic alteration as manifested by the versatility of RBPs. In intrahepatic cholangiocarcinoma, circMBOAT2 is upregulated and promotes cancer progression by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export, which alters lipid metabolic profile and regulates redox homeostasis [192]. Data from the study showed that the splicing form of FASN was not changed after knocking down PTBP1 but an examination of AS events at the whole-transcriptome level was absent. Further studies characterizing how circRNAs affect global splicing events will provide more details with higher fidelity on how circRNAs participate in the regulatory network of splicing factors.

CircRNAs with microRNA sponging function could regulate the expression level of splicing factors to further modulate AS events. In non-small cell lung cancer, circRNA_100146 is identified to bind different subtypes of splicing factor SF3 family and may affect SF3B3 expression through sponging miR-361-3p and miR-615-5p [193]. In papillary thyroid cancer, circTIAM1 acts as a sponge of miR-646 to promote oncogenesis by elevating HNRNPA1 expression [194]. It is worth noting that circRNAs may cause phenotypic alteration through parallel protein interacting and microRNA sponging mechanisms. For instance, circPPAP2B not only serves as a protein scaffold as mentioned above, but also sponges miR-182-5p to increase CYP1B1 expression in the same context [187].

Feed-back regulation loops of CircRNAs

As discussed above, the biogenesis of circRNAs is also modulated by multiple splicing factors. Therefore, the functional relevance between splicing factors and circRNAs is bidirectional and possibly manifests in a feedback loop regulation. Most commonly, oncogenic circRNAs are involved in positive feedback loops that are self-augmenting and progressively promote cancer progression. On the contrary, negative feedback loops of circRNAs are self-limiting and play a role in maintaining the homeostasis of its components. Perturbations from oncogenic factors may predispose, such loops toward a harmful level. In both cases, the loop itself is irrelevant to particular phenotypes but malfunction of its components alters cellular behaviors and thereby exerts oncogenic effects.

ADAR

In pancreatic ductal adenocarcinoma, circNEIL3 was shown to boost the expression of ADAR1 by sponging miR-432-5p to antagonize miR-432-5p-induced ADAR1 degradation [195]. In return, ADAR1 was shown to decrease circNEIL3 abundance, forming a negative feedback loop that holds the balance between circNEIL3 and ADAR1. Upregulation of ADAR1 subsequentially induces RNA editing of GLI1, ultimately influencing the cell cycle and promoting EMT in pancreatic ductal adenocarcinoma cells. However, further validations from clinical data in this study indicated that circNEIL3 and ADAR1 expression were negatively correlated with miR-432-5p expression levels, while circNEIL3 was positively correlated with ADAR1. Though interpretation of such controversy requires further experimental exploration, we could conclude from this case that dynamic molecular mechanisms may or may not be reflected in a cross-sectional clinical observation that represents an already-built disease state at a single time point.

hnRNP family

In gastric cancer, circFAM73A promotes the expression of HMGA2 by sponging miR-490-3p [196]. Upregulated HMGA2 not only boosts cancer stemness but also enhances HNRNPL activity, which in turn promotes circFAM73A biogenesis to build up a positive feedback loop. Intriguingly, HMGA2 also facilitates the transcription of cognate FAM73A mRNA by increasing the activity of transcription factor E2F1. As a consequence, the increase of circFAM73A does not accompany significant alteration in its cognate mRNA transcripts. A similar regulatory process was also identified for circTDRD3. In colorectal cancer, circTDRD3 elevates HIF1α expression by sponging miR-1231 [197]. HIF1α synergistically induces the transcription of TDRD3 pre-mRNA and PTBP1 to accelerate the formation of circTDRD3. As the oncogenic effector, HIF1α consequently facilitates colorectal cancer proliferation and metastasis. In both cases, the loops are joined by transcription factors that elevate the expression of both splicing factors and their target gene. Considering the possible effects from the expression of cognate mRNAs, targeting splicing factors to suppress cancer progression seems less favorable than targeting other nodes on the chain.

FUS

As mentioned above, FUS is involved in circRNA biogenesis by binding flanking introns to facilitate circularization. In breast cancer, FUS is implied in multiple positive feedback loops concerning circRNA biogenesis, highlighting its potential as a therapeutic target. CircROBO1 could upregulate KLF5 by sponging miR-217-5p, allowing KLF5 to activate the transcription of FUS, which in return promotes the back splicing of circROBO1 [198]. Besides, overexpressed circEZH2 was reported to promote tumorigenesis and liver metastasis of breast cancer in vivo. Mechanistically, circEZH2 also adsorbs miR-217-5p to upregulate KLF5 thus leading to FUS transcription [199]. Another report concerning triple-negative breast cancer indicated that FUS could regulate the biogenesis of circHIF1A and that FUS was transcriptionally regulated by NFIB [200]. CircHIF1A promotes the expression and translocation of NFIB through posttranscriptional and posttranslational modifications. While present studies have well elucidated the pluripotency of FUS, a thorough assessment of how FUS influences circRNA transcriptome in breast cancer will consolidate the feasibility of exploiting FUS as a therapeutic target.

ESRP1

ESRP1 is actively involved in cancer progression by mediating the EMT process and ESRP1-related regulatory loops were well depicted. In oral squamous cell carcinoma, circUHRF1 acts as the sponge of miR-526b-5p, thereby upregulating transcription factor c-Myc. c-Myc could accelerate the transcription of ESRP1 and other oncogenes. Moreover, ESRP1 promoted the circularization and biogenesis of circUHRF1 by targeting the flanking introns, forming the circUHRF1/miR-526b-5p/c-Myc/ESRP1 positive feedback loop [201]. Moreover, circANKS1B biogenesis in breast cancer is promoted by ESRP1. circANKS1B serves as a miRNA sponge to increase the expression of transcription factor USF1, which elevates the expressional level of USF1 and EMT-related genes [202].

Intriguingly, the cognate circRNA of ESRP1 inhibits EMT clear cell renal cell carcinoma by attuning c-Myc activity. CTCF, a downstream target of miR-3942, specifically promotes circESRP1 transcription and is regulated by the circESRP1/miR-3942 pathway to form a positive feedback loop [203]. Though the study reported no significant correlation between CTCF and ESRP1 mRNA, given that ESRP1 itself is involved in the regulation of circRNA biogenesis across multiple cancer types including clear cell renal cell carcinoma [151], it is conceivable that circESRP1 and the splicing factor ESRP1 is involved in complex regulatory network that remains unresolved.

Zinc finger E-box binding homeobox 1

Zinc finger E-box binding homeobox 1 (ZEB1) is a major EMT regulating transcription factor that acts upstream of multiple splicing factors, including ESRP1 and EIF4A3, to repress their expression [204, 205]. Hence, alteration of ZEB1 may reshape circRNA biogenesis indirectly through its transcriptional activity. Beyond that, current studies have corroborated that ZEB1 directly regulates circRNA biogenesis to affect carcinogenesis. CircNIPBL activates the Wnt/β-catenin signaling pathway via directly sponged miR-16-2-3p, leading to the upregulation of ZEB1, which triggers the EMT of bladder cancer. ZEB1 interacted with the flanking introns on NIPBL pre-mRNA to trigger circNIPBL biogenesis, thus forming a positive feedback loop [206]. Besides, ZEB1 also downregulates circDOCK5 through both directly binding to its pre-mRNA and suppressing EIF4A3 expression in esophageal squamous cell carcinoma. CircDOCK5 increased the stability of miR-627-3p by functioning as a “reservoir” for miR-627-3p to partially reverse the ZEB1-enhanced migration and invasion. MiR-627-3p inhibited the expression of TGFB2 and the secretion of TGF-β, which further resulted in downregulation of ZEB1 and suppression of TGF-β-induced EMT [205].

Conclusions

Ever since the initial insight into the biogenesis of circRNA by Zhang et al. and Ashwal-Fluss et al., blooming and dedicated studies have revealed the tight relationship between AS and circRNAs and their roles in cancer biology (Fig. 5) [14, 35, 207]. The interplay between circRNAs and AS underscores a complex regulatory mechanism, where AS coordinates circRNA biogenesis and splicing of their linear cognate transcripts, and circRNAs interact with components of the splicing machinery to modulate AS events. Moreover, modifications on DNA, pre-mRNA, or histones simultaneously affect AS and circRNA biogenesis by establishing binding motifs or steric effects. Such intricate crosstalk between circRNAs and AS represents a critical facet of gene regulation in cancer biology. Malfunctioning AS machinery results in the anomalous transcriptome, including circRNA transcriptome, that underlies tumor progression, relapse, and therapy resistance. Currently, dedicated works illustrating how circRNAs and AS interact at a single gene level have been emerging, but inclusive and systematic research to draw the whole picture is still lacking. As we emphasized above, feedback regulations between AS and circRNAs reflect the potential homeostasis of circRNA biogenesis that is recurrently disrupted in cancers. Additionally, the versatility of circRNAs and RBPs implies that a multilayer and interlaced regulatory network will surely fit better than a model depicting isolated regulatory axes. Therefore, utilizing a multiomic approach to investigate the relationship between circRNA will provide better insight into cancer biology.

Fig. 5
figure 5

Remarks of studies demonstrating the crosstalk between circRNA and alternative splicing in cancer. During the past decade, blooming studies have well established the crosstalk between circRNA and alternative splicing in cancer. Ever since the initial insight into the biogenesis of circRNA by Zhang et al. and Ashwal-Fluss et al. in 2014, dedicated studies have indicated the tight relationship between AS and circRNAs. As the molecular mechanisms of circRNA biogenesis and alternative splicing are resolved, it has been widely recognized that circRNA and alternative splicing are coupled through key steps in gene expression. Nowadays, nanopore sequencing technology has laid foundation for genomic-scale profiling of full-length mRNA and circRNA splicing variants, which provide valuable resources for understanding cancer biology

Current advances in nanopore-based long-read sequencing have enabled reliably characterization of full-length mRNA and circRNA isoforms [208, 209], laying the foundation for databases with comprehensive RNA variant catalogs [210]. Despite that, the low abundance of circRNA and AS products still obscures genomic scale studies. For instance, though it has been well illustrated that alternative back-splicing generates circRNA isoforms, scarcely have studies identified or distinguished circRNA variants with functional relevance. Similarly, AS-derived protein variants and circRNA translation products may be covered by noise or their cognate constitutive protein products in current proteomic studies. Further investigation into circRNA and AS necessitates novel technologies with higher resolution and sensitivity [211].

Recently, several online databases have been developed that focused on the expression, biological function and clinical implications of circRNAs in cancer (Table 2). While several platforms are not circRNA or cancer specific, they included circRNA and cancer as an important part of the whole repository [212, 213]. Notably, some of these platforms support online analysis and visualization with interactive and user-friendly web interfaces [214, 215]. With the development of single cell RNA sequencing techniques, researches are now able to summarize cell linage specific circRNA expression and explore their disease relevance [216]. Consulting these valuable resources will indeed bring great convenience, but the results should be further validated with thorough experiments and clinical trials before clinical translation.

Table 2 Online databases focused on circRNAs in cancer

AS and circRNAs provide valuable diagnostic and therapeutic clues for clinicians (Fig. 6). Detecting alterations in global splicing patterns and the occurrence of certain splicing variants may become a practicable diagnostic measure and predictive of prognosis and drug response. However, therapeutic attempts targeting AS should be inspected with caution. On the one hand, most factors, essentially speaking most RBPs, are versatile and participate in different steps of gene expression. On the other hand, even for splicing factors with clear functional relevance, such as QKI and ESRP1, target genes of the same splicing factor may impose opposite effects on cancers in a context-dependent manner. Therefore, simply abolishing or amplifying the activity of a splicing factor may not be a favorable therapeutic approach and accompanies imponderable side effects. Conversely, circRNAs are promising therapeutic targets or agents as well as valuable biomarkers for cancer diagnosis and prognostication owing to their innate stability. Engineered circRNAs have gained preliminary progress in vaccination, RNA-editing, and targeted protein expression [217,218,219]. Utilizing engineered antisense circRNA, researchers have successfully modulated exon skipping events to treat Duchenne muscular dystrophy in a mouse model [220]. Nevertheless, the complex crosstalk between AS and circRNA holds immense therapeutic potential. Resolving the crosstalk between AS and circRNA expands the potential of circRNA agents and helps bypass the possible side effects of aberrant AS events, paving the way for novel strategies to combat cancer.

Fig. 6
figure 6

Therapeutic application of circRNA and alternative splicing. The crosstalk between circRNA and alternative splicing (AS) carries great therapeutic potential. Detecting alterations in patient circRNA transcriptome and AS pattern provides valuable information for molecular therapy design and a patient profile that is indicative of therapeutic response and prognosis, which contributes to precision medicine in cancer treatment. Moreover, circRNAs are promising therapeutic targets. Engineered circRNAs are capable of modulating gene expression through multiple mechanisms to modulate gene expression in cancer cells, thereby serving as a potent anticancer agent

Availability of data and materials

Not applicable.

Abbreviations

ADAR:

Adenosine deaminases acting on RNA

AML:

Acute myeloid leukemia

AS:

Alternative splicing

ceRNA:

Competing endogenous RNA

circRNA:

Circular RNA

ciRNA:

Circular intronic RNA

CpG:

Cytosine-phosphate-guanine

CTCF:

CCCTC-binding factor

DHX9:

DExH-box helicase 9

EIF4A3:

Ekaryotic translation initiation factor 4A3

EMT:

Epithelial-mesenchymal transition

EP300:

E1A binding protein p300

ESRP1:

Epithelial splicing regulatory protein 1

FUS:

Fused in sarcoma

hnRNP:

Heterogeneous nuclear ribonucleoprotein particle

ICS:

Intronic complementary sequences

IRAlu element:

Inverted repeated Alu element

IRES:

Internal ribosome entry site

m6A modification:

N6-methyladenosine modification

METTL3:

Methyltransferase like 3

miRNA:

MicroRNA

MRE:

MicroRNA response element

NMD:

Nonsense-mediated decay

pre-mRNA:

Pre-messenger RNA

QKI:

Quaking

snRNA:

Small nuclear RNA

RBP:

RNA binding protein

snRNP:

Small nuclear ribonucleoprotein

SRSF1:

Serine/arginine-rich splicing factor 1

TME:

Tumor microenvironment

UTR:

Untranslated region

YTHDF3:

YTH N6-methyladenosine RNA binding protein F3

ZEB1:

Zinc finger E-box binding homeobox 1

References

  1. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature07509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022;23(11):697–710. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41576-022-00514-4.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/2159-8290.Cd-21-1059.

    Article  CAS  PubMed  Google Scholar 

  4. Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23(3):135–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41568-022-00541-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41571-021-00585-y.

    Article  CAS  PubMed  Google Scholar 

  6. Xu C, Jun E, Okugawa Y, Toiyama Y, Borazanci E, Bolton J, Taketomi A, Kim SC, Shang D, Von Hoff D, et al. A circulating panel of circRNA biomarkers for the noninvasive and early detection of pancreatic ductal adenocarcinoma. Gastroenterology. 2024;166(1):178-190.e116. https://doiorg.publicaciones.saludcastillayleon.es/10.1053/j.gastro.2023.09.050.

    Article  CAS  PubMed  Google Scholar 

  7. Wen N, Peng D, Xiong X, Liu G, Nie G, Wang Y, Xu J, Wang S, Yang S, Tian Y, et al. Cholangiocarcinoma combined with biliary obstruction: an exosomal circRNA signature for diagnosis and early recurrence monitoring. Signal Transduct Target Ther. 2024;9(1):107. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41392-024-01814-3.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gr.202895.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kong Y, Luo Y, Zheng S, Yang J, Zhang D, Zhao Y, Zheng H, An M, Lin Y, Ai L, et al. Mutant KRAS mediates circARFGEF2 biogenesis to promote lymphatic metastasis of pancreatic ductal adenocarcinoma. Cancer Res. 2023;83(18):3077–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.Can-22-3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, Dybkov O, Urlaub H, Kastner B, Lührmann R, Stark H. Structure and conformational dynamics of the human spliceosomal B(act) complex. Cell. 2018;172(3):454-464.e411. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  11. Kastner B, Will CL, Stark H, Lührmann R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb Perspect Biol. 2019. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/cshperspect.a032417.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li X, Liu S, Zhang L, Issaian A, Hill RC, Espinosa S, Shi S, Cui Y, Kappel K, Das R, et al. A unified mechanism for intron and exon definition and back-splicing. Nature. 2019;573(7774):375–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-019-1523-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang H, Zhang J, Harvey SE, Hu X, Cheng C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev. 2017;31(22):2296–309. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.305862.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  15. Kalinina M, Skvortsov D, Kalmykova S, Ivanov T, Dontsova O, Pervouchine DD. Multiple competing RNA structures dynamically control alternative splicing in the human ATE1 gene. Nucl Acid Res. 2021;49(1):479–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkaa1208.

    Article  CAS  Google Scholar 

  16. Motta-Mena LB, Heyd F, Lynch KW. Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell. 2010;37(2):223–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2009.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16(7):413–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrc.2016.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu L, Vujovic A, Deshpande NP, Sathe S, Anande G, Chen HTT, Xu J, Minden MD, Yeo GW, Unnikrishnan A, et al. The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors. Nat Commun. 2022;13(1):3833. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-022-31155-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Rätsch G. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34(2):211-224.e216. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ccell.2018.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicing network links cell-cycle control to apoptosis. Cell. 2010;142(4):625–36. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2010.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovalak C, Donovan S, Bicknell AA, Metkar M, Moore MJ. Deep sequencing of pre-translational mRNPs reveals hidden flux through evolutionarily conserved alternative splicing nonsense-mediated decay pathways. Genome Biol. 2021;22(1):132. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13059-021-02309-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindeboom RG, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng.3664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoyos LE, Abdel-Wahab O. Cancer-specific splicing changes and the potential for splicing-derived neoantigens. Cancer Cell. 2018;34(2):181–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ccell.2018.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bigot J, Lalanne AI, Lucibello F, Gueguen P, Houy A, Dayot S, Ganier O, Gilet J, Tosello J, Nemati F, et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 2021;11(8):1938–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/2159-8290.Cd-20-0555.

    Article  CAS  PubMed  Google Scholar 

  25. Brown M, Vabret N. Alternative RNA splicing generates shared clonal neoantigens across different types of cancer. Nat Rev Immunol. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41577-023-00986-3.

    Article  PubMed  Google Scholar 

  26. Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, Desi N, Subramaniam N, Siemens A, Kinanti T, et al. Pan-cancer pervasive upregulation of 3’ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24(6):928–39. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41556-022-00913-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rivera OD, Mallory MJ, Quesnel-Vallières M, Chatrikhi R, Schultz DC, Carroll M, Barash Y, Cherry S, Lynch KW. Alternative splicing redefines landscape of commonly mutated genes in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.2014967118.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, Wilkinson JE, Park Y, Tuveson DA, Krainer AR. Splicing factor SRSF1 promotes pancreatitis and KRASG12D-mediated pancreatic cancer. Cancer Discov. 2023;13(7):1678–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/2159-8290.Cd-22-1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheng J, Zhao Q, Zhao J, Zhang W, Sun Y, Qin P, Lv Y, Bai L, Yang Q, Chen L, et al. SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine. 2018;38:113–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ebiom.2018.11.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nsmb1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng R, Xiao L, Zhou W, Jin X, Xu Z, Xu C, Wang P, Luo M, Wang M, Ma K, et al. A pan-cancer analysis of alternative splicing of splicing factors in 6904 patients. Oncogene. 2021;40(35):5441–50. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41388-021-01947-7.

    Article  CAS  PubMed  Google Scholar 

  32. Han J, An O, Ren X, Song Y, Tang SJ, Shen H, Ke X, Ng VHE, Tay DJT, Tan HQ, et al. Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer. Nat Commun. 2022;13(1):1793. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-022-29400-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki H, Kumar SA, Shuai S, Diaz-Navarro A, Gutierrez-Fernandez A, De Antonellis P, Cavalli FMG, Juraschka K, Farooq H, Shibahara I, et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature. 2019;574(7780):707–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-019-1650-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh JM, Venters CC, Di C, Pinto AM, Wan L, Younis I, Cai Z, Arai C, So BR, Duan J, et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun. 2020;11(1):1. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-019-13993-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2014.08.019.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15(3):611–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2016.03.058.

    Article  CAS  PubMed  Google Scholar 

  37. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233–47. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.251926.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang M, Hou J, Müller-McNicoll M, Chen W, Schuman EM. Long and Repeat-rich intronic sequences favor circular RNA formation under conditions of reduced spliceosome activity. iScience. 2019;20:237–47. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.isci.2019.08.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong R, Ma XK, Chen LL, Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol. 2017;14(8):1064–74. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/15476286.2016.1269999.

    Article  PubMed  Google Scholar 

  40. Aktaş T, Avşar Ilık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, Manke T, Backofen R, Akhtar A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017;544(7648):115–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature21715.

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nsmb.2959.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2013.08.017.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang P, Zhang XO, Jiang T, Cai L, Huang X, Liu Q, Li D, Lu A, Liu Y, Xue W, et al. Comprehensive identification of alternative back-splicing in human tissue transcriptomes. Nucl Acid Res. 2020;48(4):1779–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkaa005.

    Article  CAS  Google Scholar 

  44. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun. 2016. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ncomms12060.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucl Acid Res. 2016;44(3):1370–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkv1367.

    Article  CAS  Google Scholar 

  46. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13059-014-0409-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32(9–10):639–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.314856.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2011.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54(5):766–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2014.03.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014;56(3):347–59. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2014.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossi F, Beltran M, Damizia M, Grelloni C, Colantoni A, Setti A, Di Timoteo G, Dattilo D, Centrón-Broco A, Nicoletti C, et al. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell. 2022;82(1):75-89.e79. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2021.11.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185(12):2016–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2022.04.021.

    Article  CAS  PubMed  Google Scholar 

  53. Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK, et al. Structured elements drive extensive circular RNA translation. Mol Cell. 2021;81(20):4300-4318.e4313. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2021.07.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 2022;13(1):3751. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-022-31327-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27(5):626–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/cr.2017.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, Incarnato D, Oliviero S, Fatica A, Morlando M, et al. Modulation of circRNA metabolism by m(6)A modification. Cell Rep. 2020;31(6): 107641. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2020.107641.

    Article  CAS  PubMed  Google Scholar 

  57. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al. Translation of CircRNAs. Mol Cell. 2017;66(1):9-21.e27. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2017.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S, Sandmann CL, et al. The translational landscape of the human heart. Cell. 2019;178(1):242-260.e229. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  59. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al. The landscape of circular RNA in cancer. Cell. 2019;176(4):869-881.e813. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2018.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/srep08057.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S, Wilusz JE. The output of protein-coding genes shifts to circular rnas when the Pre-mRNA processing machinery is limiting. Mol Cell. 2017;68(5):940-954.e943. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2017.10.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vítor AC, Desterro JM, Carmo-Fonseca M, de Almeida SF. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.09214.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature11993.

    Article  CAS  PubMed  Google Scholar 

  64. Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y, Goel A. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 2017;23(14):3918–28. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/1078-0432.Ccr-16-2541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mao W, Wang K, Xu B, Zhang H, Sun S, Hu Q, Zhang L, Liu C, Chen S, Wu J, et al. ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Mol Cancer. 2021;20(1):142. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-021-01443-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23(3):278–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41556-021-00639-4.

    Article  CAS  PubMed  Google Scholar 

  67. Wang S, Wang Y, Li Q, Li X, Feng X, Zeng K. The novel β-TrCP protein isoform hidden in circular RNA confers trastuzumab resistance in HER2-positive breast cancer. Redox Biol. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.redox.2023.102896.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, Zeng X, Wang J, Yang B, Zhang Y, et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature. 2024;625(7995):593–602. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41586-023-06834-7.

    Article  CAS  PubMed  Google Scholar 

  69. Kristensen LS, Ebbesen KK, Sokol M, Jakobsen T, Korsgaard U, Eriksen AC, Hansen TB, Kjems J, Hager H. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat Commun. 2020;11(1):4551. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-020-18355-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 2023;16(1):67. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13045-023-01452-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications—cause and consequence of genome function. Nat Rev Genet. 2022;23(9):563–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41576-022-00468-7.

    Article  CAS  PubMed  Google Scholar 

  72. Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon. 2023;9(6): e16407. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.heliyon.2023.e16407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu CP, Yu Z, Xiong J, Hu J, Song A, Ding D, Yu C, Yang N, Wang M, Yu J, et al. Structural insights into histone binding and nucleosome assembly by chromatin assembly factor-1. Science. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.add8673.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Spies N, Nielsen CB, Padgett RA, Burge CB. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell. 2009;36(2):245–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2009.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327(5968):996–1000. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.1184208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Agirre E, Oldfield AJ, Bellora N, Segelle A, Luco RF. Splicing-associated chromatin signatures: a combinatorial and position-dependent role for histone marks in splicing definition. Nat Commun. 2021;12(1):682. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-021-20979-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kerschbamer E, Arnoldi M, Tripathi T, Pellegrini M, Maturi S, Erdin S, Salviato E, Di Leva F, Sebestyén E, Dassi E, et al. CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing. Nucl Acid Res. 2022;50(22):12809–28. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkac1134.

    Article  CAS  Google Scholar 

  78. Segelle A, Núñez-Álvarez Y, Oldfield AJ, Webb KM, Voigt P, Luco RF. Histone marks regulate the epithelial-to-mesenchymal transition via alternative splicing. Cell Rep. 2022;38(7): 110357. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2022.110357.

    Article  CAS  PubMed  Google Scholar 

  79. Li T, Liu Q, Garza N, Kornblau S, Jin VX. Integrative analysis reveals functional and regulatory roles of H3K79me2 in mediating alternative splicing. Genome Med. 2018;10(1):30. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13073-018-0538-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, Hansen TM, Risi RM, Frey R, Manaves V, et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature. 2017;550(7674):128–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature24028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Caligiuri M, Williams GL, Castro J, Battalagine L, Wilker E, Yao L, Schiller S, Toms A, Li P, Pardo E, et al. FT-6876, a potent and selective inhibitor of CBP/p300, is active in preclinical models of androgen receptor-positive breast cancer. Target Oncol. 2023;18(2):269–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11523-023-00949-7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Burbage M, Rocañín-Arjó A, Baudon B, Arribas YA, Merlotti A, Rookhuizen DC, Heurtebise-Chrétien S, Ye M, Houy A, Burgdorf N, et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci Immunol. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/sciimmunol.abm6360.

    Article  PubMed  Google Scholar 

  83. Zhang M, Xu K, Fu L, Wang Q, Chang Z, Zou H, Zhang Y, Li Y. Revealing epigenetic factors of circRNA expression by machine learning in various cellular contexts. iScience. 2020;23(12):101842. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.isci.2020.101842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ruan H, Xiang Y, Ko J, Li S, Jing Y, Zhu X, Ye Y, Zhang Z, Mills T, Feng J, et al. Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med. 2019;11(1):55. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13073-019-0663-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao Z, Song J, Tang B, Fang S, Zhang D, Zheng L, Wu F, Gao Y, Chen C, Hu X, et al. CircSOD2 induced epigenetic alteration drives hepatocellular carcinoma progression through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):259. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-020-01769-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu Z, Chen G, Zhao Y, Gao H, Li L, Yin Y, Jiang J, Wang L, Mang Y, Gao Y, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023;22(1):55. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-023-01759-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding N, You AB, Yang H, Hu GS, Lai CP, Liu W, Ye F. A tumor-suppressive molecular axis EP300/circRERE/miR-6837-3p/MAVS activates Type I IFN pathway and antitumor immunity to suppress colorectal cancer. Clin Cancer Res. 2023;29(11):2095–109. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/1078-0432.Ccr-22-3836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer. 2022;21(1):148. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-022-01620-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature18298.

    Article  CAS  PubMed  Google Scholar 

  90. Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vågbø CB, Geula S, Hanna JH, Black DL, Darnell JE Jr, Darnell RB. m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017;31(10):990–1006. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.301036.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61(4):507–19. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2016.01.012.

    Article  CAS  PubMed  Google Scholar 

  92. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518(7540):560–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature14234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen Z, Wu L, Zhou J, Lin X, Peng Y, Ge L, Chiang CM, Huang H, Wang H, He W. N6-methyladenosine-induced ERRγ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics. 2020;10(8):3382–96. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.40144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu Z, Gu S, Wu K, Li L, Dong C, Wang W, Zhou Y. CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. J Exp Clin Cancer Res. 2021;40(1):361. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-021-02149-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liang G, Ling Y, Mehrpour M, Saw PE, Liu Z, Tan W, Tian Z, Zhong W, Lin W, Luo Q, et al. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Mol Cancer. 2020;19(1):65. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-020-01152-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dattilo D, Di Timoteo G, Setti A, Giuliani A, Peruzzi G, Beltran Nebot M, Centrón-Broco A, Mariani D, Mozzetta C, Bozzoni I. The m(6)A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs. Nat Commun. 2023;14(1):1898. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-023-37578-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu Z, Zuo X, Zhang W, Li Y, Gui R, Leng J, Shen H, Pan B, Fan L, Li J, et al. m6A-modified circTET2 interacting with HNRNPC regulates fatty acid oxidation to promote the proliferation of chronic lymphocytic leukemia. Adv Sci (Weinh). 2023;10(34): e2304895. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/advs.202304895.

    Article  CAS  PubMed  Google Scholar 

  98. Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al. N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 2021;11(9):4298–315. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.51342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ghazi T, Nagiah S, Chuturgoon AA. Fusaric acid decreases p53 expression by altering promoter methylation and m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics. 2021;16(1):79–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/15592294.2020.1788324.

    Article  PubMed  Google Scholar 

  100. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–49. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev-biochem-060208-105251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zinshteyn B, Nishikura K. Adenosine-to-inosine RNA editing. Wiley Interdiscip Rev Syst Biol Med. 2009;1(2):202–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/wsbm.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chan TH, Qamra A, Tan KT, Guo J, Yang H, Qi L, Lin JS, Ng VH, Song Y, Hong H, et al. ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology. 2016;151(4):637-650.e610. https://doiorg.publicaciones.saludcastillayleon.es/10.1053/j.gastro.2016.06.043.

    Article  CAS  PubMed  Google Scholar 

  103. Fumagalli D, Gacquer D, Rothé F, Lefort A, Libert F, Brown D, Kheddoumi N, Shlien A, Konopka T, Salgado R, et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 2015;13(2):277–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2015.09.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qin YR, Qiao JJ, Chan TH, Zhu YH, Li FF, Liu H, Fei J, Li Y, Guan XY, Chen L. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res. 2014;74(3):840–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.Can-13-2545.

    Article  CAS  PubMed  Google Scholar 

  105. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24(3):365–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gr.164749.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004;14(9):1719–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gr.2855504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Daniel C, Lagergren J, Öhman M. RNA editing of non-coding RNA and its role in gene regulation. Biochimie. 2015. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biochi.2015.05.020.

    Article  PubMed  Google Scholar 

  108. Shi L, Yan P, Liang Y, Sun Y, Shen J, Zhou S, Lin H, Liang X, Cai X. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis. 2017;8(11): e3171. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/cddis.2017.556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Omata Y, Haraguchi M, Yoshinaga S, Ogino T, Okawa M, Tsuruta A, Koyanagi S, Ohdo S. RNA editing enzyme ADAR2 regulates P-glycoprotein expression in murine breast cancer cells through the circRNA-miRNA pathway. Biochem Biophys Res Commun. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2024.150289.

    Article  PubMed  Google Scholar 

  110. Shen H, An O, Ren X, Song Y, Tang SJ, Ke XY, Han J, Tay DJT, Ng VHE, Molias FB, et al. ADARs act as potent regulators of circular transcriptome in cancer. Nat Commun. 2022;13(1):1508. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-022-29138-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Bruin RG, Shiue L, Prins J, de Boer HC, Singh A, Fagg WS, van Gils JM, Duijs JM, Katzman S, Kraaijeveld AO, et al. Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression. Nat Commun. 2016. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ncomms10846.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2015.02.014.

    Article  CAS  PubMed  Google Scholar 

  113. Xu L, Ma X, Zhang X, Zhang C, Zhang Y, Gong S, Wu N, Zhang P, Feng X, Guo J, et al. hsa_circ_0007919 induces LIG1 transcription by binding to FOXA1/TET1 to enhance the DNA damage response and promote gemcitabine resistance in pancreatic ductal adenocarcinoma. Mol Cancer. 2023;22(1):195. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-023-01887-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xi Y, Shen Y, Wu D, Zhang J, Lin C, Wang L, Yu C, Yu B, Shen W. CircBCAR3 accelerates esophageal cancer tumorigenesis and metastasis via sponging miR-27a-3p. Mol Cancer. 2022;21(1):145. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-022-01615-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li Z, Li Y, Han D, Wang X, Li C, Chen T, Li W, Liang Y, Luo D, Chen B, et al. circRNA-SFMBT2 orchestrates ERα activation to drive tamoxifen resistance in breast cancer cells. Cell Death Dis. 2023;14(7):482. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-023-06006-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen D, Chou FJ, Chen Y, Tian H, Wang Y, You B, Niu Y, Huang CP, Yeh S, Xing N, et al. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141–3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett. 2020;495:100–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.canlet.2020.07.040.

    Article  CAS  PubMed  Google Scholar 

  117. Wang M, Ding X, Fang X, Xu J, Chen Y, Qian Y, Zhang J, Yu D, Zhang X, Ma X, et al. Circ6834 suppresses non-small cell lung cancer progression by destabilizing ANHAK and regulating miR-873-5p/TXNIP axis. Mol Cancer. 2024;23(1):128. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-024-02038-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol. 2011;31(20):4244–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/mcb.05244-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, et al. Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics. 2019;9(12):3526–40. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.32796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, Ma X, Cheng Z, Yu C, Wang S, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021;12(1):295. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-020-20527-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu Y, Qiu G, Luo Y, Li S, Xu Y, Zhang Y, Hu J, Li P, Pan H, Wang Y. Circular RNA ROCK1, a novel circRNA, suppresses osteosarcoma proliferation and migration via altering the miR-532-5p/PTEN axis. Exp Mol Med. 2022;54(7):1024–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-022-00806-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gupta SK, Garg A, Bär C, Chatterjee S, Foinquinos A, Milting H, Streckfuß-Bömeke K, Fiedler J, Thum T. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ Res. 2018;122(2):246–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circresaha.117.311335.

    Article  CAS  PubMed  Google Scholar 

  123. Khan MA, Reckman YJ, Aufiero S, van den Hoogenhof MM, van der Made I, Beqqali A, Koolbergen DR, Rasmussen TB, van der Velden J, Creemers EE, et al. RBM20 regulates circular RNA production from the titin gene. Circ Res. 2016;119(9):996–1003. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circresaha.116.309568.

    Article  CAS  PubMed  Google Scholar 

  124. Tijsen AJ, Cócera Ortega L, Reckman YJ, Zhang X, van der Made I, Aufiero S, Li J, Kamps SC, van den Bout A, Devalla HD, et al. Titin circular RNAs create a back-splice motif essential for SRSF10 splicing. Circulation. 2021;143(15):1502–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circulationaha.120.050455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE. The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol. 2009;7(5): e1000120. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pbio.1000120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boehm V, Britto-Borges T, Steckelberg AL, Singh KK, Gerbracht JV, Gueney E, Blazquez L, Altmüller J, Dieterich C, Gehring NH. Exon junction complexes suppress spurious splice sites to safeguard transcriptome integrity. Mol Cell. 2018;72(3):482-495.e487. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2018.08.030.

    Article  CAS  PubMed  Google Scholar 

  127. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell. 2005;20(1):65–75. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2005.08.012.

    Article  CAS  PubMed  Google Scholar 

  128. Viphakone N, Sudbery I, Griffith L, Heath CG, Sims D, Wilson SA. Co-transcriptional loading of RNA export factors shapes the human transcriptome. Mol Cell. 2019;75(2):310-323.e318. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2019.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. López-Cánovas JL, Hermán-Sánchez N, Moreno-Montilla MT, Del Rio-Moreno M, Alors-Perez E, Sánchez-Frias ME, Amado V, Ciria R, Briceño J, de la Mata M, et al. Spliceosomal profiling identifies EIF4A3 as a novel oncogene in hepatocellular carcinoma acting through the modulation of FGFR4 splicing. Clin Transl Med. 2022;12(11): e1102. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/ctm2.1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kanellis DC, Espinoza JA, Zisi A, Sakkas E, Bartkova J, Katsori AM, Boström J, Dyrskjøt L, Broholm H, Altun M, et al. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Sci Adv. 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/sciadv.abf7561.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Xu Y, Zhang S, Liao X, Li M, Chen S, Li X, Wu X, Yang M, Tang M, Hu Y, et al. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Mol Cancer. 2021;20(1):98. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-021-01394-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R, Zhang L, Chen J. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer. 2020;19(1):73. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-020-01183-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu R, Niu Y, Xu Y. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 2022;82(5):831–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.Can-21-2988.

    Article  CAS  PubMed  Google Scholar 

  134. Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, Shi Z, You Y. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 2021;23(4):611–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/neuonc/noaa214.

    Article  CAS  PubMed  Google Scholar 

  135. Feng ZH, Zheng L, Yao T, Tao SY, Wei XA, Zheng ZY, Zheng BJ, Zhang XY, Huang B, Liu JH, et al. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis. 2021;12(11):1025. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-021-04339-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Song J, Liu Q, Han L, Song T, Huang S, Zhang X, He Q, Liang C, Zhu S, Xiong B. Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J Exp Clin Cancer Res. 2023;42(1):319. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-023-02887-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zheng L, Liang H, Zhang Q, Shen Z, Sun Y, Zhao X, Gong J, Hou Z, Jiang K, Wang Q, et al. circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling. Mol Cancer. 2022;21(1):41. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-022-01495-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang M, Hu H, Wu S, Ding J, Yin B, Huang B, Li F, Guo X, Han L. EIF4A3-regulated circ_0087429 can reverse EMT and inhibit the progression of cervical cancer via miR-5003-3p-dependent upregulation of OGN expression. J Exp Clin Cancer Res. 2022;41(1):165. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-022-02368-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xing W, Zhou PC, Zhang HY, Chen LM, Zhou YM, Cui XF, Liu ZG. Circular RNA circ_GLIS2 suppresses hepatocellular carcinoma growth and metastasis. Liver Int. 2022;42(3):682–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/liv.15097.

    Article  CAS  PubMed  Google Scholar 

  140. Li L, Liu D, Chen T, Wei C, Qiao Y, Liu W, Liang Y, Liang Z, Chen C, Li D, et al. Hypoxia-enhanced YAP1-EIF4A3 interaction drives circ_0007386 circularization by competing with CRIM1 pre-mRNA linear splicing and promotes non-small cell lung cancer progression. J Exp Clin Cancer Res. 2024;43(1):200. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-024-03116-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cai J, Chen Z, Zhang Y, Wang J, Zhang Z, Wu J, Mao J, Zuo X. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 2022;24:755–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.omto.2022.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou B, Mo Z, Lai G, Chen X, Li R, Wu R, Zhu J, Zheng F. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-?B-IL-6 axis of tumor-associated macrophages. J Exp Clin Cancer Res. 2023;42(1):48. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-023-02620-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang X, Triboulet R, Liu Q, Sendinc E, Gregory RI. Exon junction complex shapes the m(6)A epitranscriptome. Nat Commun. 2022;13(1):7904. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-022-35643-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang X, Han F, Hu X, Li G, Wu H, Can C, Wei Y, Liu J, Wang R, Jia W, et al. EIF4A3-induced Circ_0001187 facilitates AML suppression through promoting ubiquitin-proteasomal degradation of METTL3 and decreasing m6A modification level mediated by miR-499a-5p/RNF113A pathway. Biomark Res. 2023;11(1):59. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40364-023-00495-4.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wei W, Sun J, Zhang H, Xiao X, Huang C, Wang L, Zhong H, Jiang Y, Zhang X, Jiang G. Circ0008399 interaction with WTAP promotes assembly and activity of the m(6)A methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res. 2021;81(24):6142–56. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.Can-21-1518.

    Article  CAS  PubMed  Google Scholar 

  146. Chang J, Shin MK, Park J, Hwang HJ, Locker N, Ahn J, Kim D, Baek D, Park Y, Lee Y, et al. An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucl Acid Res. 2023;51(20):10950–69. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkad763.

    Article  CAS  Google Scholar 

  147. Wineberg Y, Bar-Lev TH, Futorian A, Ben-Haim N, Armon L, Ickowicz D, Oriel S, Bucris E, Yehuda Y, Pode-Shakked N, et al. Single-cell RNA sequencing reveals mRNA splice isoform switching during kidney development. J Am Soc Nephrol. 2020;31(10):2278–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1681/asn.2019080770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yao J, Caballero OL, Huang Y, Lin C, Rimoldi D, Behren A, Cebon JS, Hung MC, Weinstein JN, Strausberg RL, et al. Altered expression and splicing of ESRP1 in malignant melanoma correlates with epithelial-mesenchymal status and tumor-associated immune cytolytic activity. Cancer Immunol Res. 2016;4(6):552–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/2326-6066.Cir-15-0255.

    Article  CAS  PubMed  Google Scholar 

  149. Walser TC, Jing Z, Tran LM, Lin YQ, Yakobian N, Wang G, Krysan K, Zhu LX, Sharma S, Lee MH, et al. Silencing the snail-dependent RNA splice regulator ESRP1 drives malignant transformation of human pulmonary epithelial cells. Cancer Res. 2018;78(8):1986–99. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/0008-5472.Can-17-0315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu D, Dredge BK, Bert AG, Pillman KA, Toubia J, Guo W, Dyakov BJA, Migault MM, Conn VM, Conn SJ, et al. ESRP1 controls biogenesis and function of a large abundant multiexon circRNA. Nucl Acid Res. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkad1138.

    Article  Google Scholar 

  151. Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, et al. Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 2022;12(7): e994. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/ctm2.994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ji Y, Ni C, Shen Y, Xu Z, Tang L, Yu F, Zhu L, Lu H, Zhang C, Yang S, et al. ESRP1-mediated biogenesis of circPTPN12 inhibits hepatocellular carcinoma progression by PDLIM2/ NF-κB pathway. Mol Cancer. 2024;23(1):143. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-024-02056-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, Kuo HC. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8(1):1149. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-017-01216-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nan A, Chen L, Zhang N, Jia Y, Li X, Zhou H, Ling Y, Wang Z, Yang C, Liu S, et al. Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family. Adv Sci (Weinh). 2019;6(2):1800654. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/advs.201800654.

    Article  CAS  PubMed  Google Scholar 

  155. Shah K, Gagliano T, Garland L, O’Hanlon T, Bortolotti D, Gentili V, Rizzo R, Giamas G, Dean M. Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing. Oncogene. 2020;39(39):6172–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41388-020-01429-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Munkley J, Li L, Krishnan SRG, Hysenaj G, Scott E, Dalgliesh C, Oo HZ, Maia TM, Cheung K, Ehrmann I, et al. Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. Elife. 2019. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.47678.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hübschmann D, et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell. 2018;34(6):996-1011.e1018. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ccell.2018.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, Cotter MB, Bowden M, Lis RT, Zhao SG, et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci U S A. 2017;114(26):E5207-e5215. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.1617467114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lv J, Li K, Yu H, Han J, Zhuang J, Yu R, Cheng Y, Song Q, Bai K, Cao Q, et al. HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. J Exp Clin Cancer Res. 2023;42(1):41. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-023-02614-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li Y, Chen B, Zhao J, Li Q, Chen S, Guo T, Li Y, Lai H, Chen Z, Meng Z, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci (Weinh). 2021;8(13):2001701. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/advs.202001701.

    Article  CAS  PubMed  Google Scholar 

  161. Ho JS, Di Tullio F, Schwarz M, Low D, Incarnato D, Gay F, Tabaglio T, Zhang J, Wollmann H, Chen L, et al. HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness. Elife. 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.59654.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Jia W, Kim SH, Scalf MA, Tonzi P, Millikin RJ, Guns WM, Liu L, Mastrocola AS, Smith LM, Huang TT, et al. Fused in sarcoma regulates DNA replication timing and kinetics. J Biol Chem. 2021;297(3): 101049. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jbc.2021.101049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron. 2023;111(9):1355–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neuron.2023.02.028.

    Article  CAS  PubMed  Google Scholar 

  164. Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci. 2013;16(10):1383–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nn.3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363(6430):640–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/363640a0.

    Article  CAS  PubMed  Google Scholar 

  166. Liu Y, Liu Y, He Y, Zhang N, Zhang S, Li Y, Wang X, Liang Y, Chen X, Zhao W, et al. Hypoxia-induced FUS-circTBC1D14 stress granules promote autophagy in TNBC. Adv Sci (Weinh). 2023;10(10): e2204988. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/advs.202204988.

    Article  CAS  PubMed  Google Scholar 

  167. He T, Zhang Q, Xu P, Tao W, Lin F, Liu R, Li M, Duan X, Cai C, Gu D, et al. Extracellular vesicle-circEHD2 promotes the progression of renal cell carcinoma by activating cancer-associated fibroblasts. Mol Cancer. 2023;22(1):117. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-023-01824-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen J, Wu Y, Luo X, Jin D, Zhou W, Ju Z, Wang D, Meng Q, Wang H, Fu X, et al. Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics. 2021;11(15):7507–26. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/thno.59546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang C, Frias MA, Mele A, Ruggiu M, Eom T, Marney CB, Wang H, Licatalosi DD, Fak JJ, Darnell RB. Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science. 2010;329(5990):439–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.1191150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Saito Y, Yuan Y, Zucker-Scharff I, Fak JJ, Jereb S, Tajima Y, Licatalosi DD, Darnell RB. Differential NOVA2-mediated splicing in excitatory and inhibitory neurons regulates cortical development and cerebellar function. Neuron. 2019;101(4):707-720.e705. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neuron.2018.12.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Misra A, Ou J, Zhu LJ, Green MR. Global promotion of alternative internal exon usage by mRNA 3’ end formation factors. Mol Cell. 2015;58(5):819–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molcel.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Knupp D, Cooper DA, Saito Y, Darnell RB, Miura P. NOVA2 regulates neural circRNA biogenesis. Nucl Acid Res. 2021;49(12):6849–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkab523.

    Article  CAS  Google Scholar 

  173. Li G, Huang M, Cai Y, Yang Y, Sun X, Ke Y. Circ-U2AF1 promotes human glioma via derepressing neuro-oncological ventral antigen 2 by sponging hsa-miR-7-5p. J Cell Physiol. 2019;234(6):9144–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcp.27591.

    Article  CAS  PubMed  Google Scholar 

  174. Giampietro C, Deflorian G, Gallo S, Di Matteo A, Pradella D, Bonomi S, Belloni E, Nyqvist D, Quaranta V, Confalonieri S, et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun. 2015;6:8479. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ncomms9479.

    Article  CAS  PubMed  Google Scholar 

  175. Baek S, Oh TG, Secker G, Sutton DL, Okuda KS, Paterson S, Bower NI, Toubia J, Koltowska K, Capon SJ, et al. The alternative splicing regulator Nova2 constrains vascular Erk signaling to limit specification of the lymphatic lineage. Dev Cell. 2019;49(2):279-292.e275. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.devcel.2019.03.017.

    Article  CAS  PubMed  Google Scholar 

  176. Gallo S, Arcidiacono MV, Tisato V, Piva R, Penolazzi L, Bosi C, Feo CV, Gafà R, Secchiero P. Upregulation of the alternative splicing factor NOVA2 in colorectal cancer vasculature. Onco Target Ther. 2018;11:6049–56. https://doiorg.publicaciones.saludcastillayleon.es/10.2147/ott.S171678.

    Article  CAS  Google Scholar 

  177. Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, et al. Alternative splicing changes promoted by NOVA2 upregulation in endothelial cells and relevance for gastric cancer. Int J Mol Sci. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms24098102.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Angiolini F, Belloni E, Giordano M, Campioni M, Forneris F, Paronetto MP, Lupia M, Brandas C, Pradella D, Di Matteo A, et al. A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. Elife. 2019. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.44305.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chen T, Feng G, Xing Z, Gao X. Circ-EIF3I facilitates proliferation, migration, and invasion of lung cancer via regulating the activity of Wnt/β-catenin pathway through the miR-1253/NOVA2 axis. Thorac Cancer. 2022;13(22):3133–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/1759-7714.14665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yi S, Li Z, Wang X, Du T, Chu X. Circ_0001806 promotes the proliferation, migration and invasion of NSCLC Cells through miR-1182/NOVA2 Axis. Cancer Manag Res. 2021;13:3067–77. https://doiorg.publicaciones.saludcastillayleon.es/10.2147/cmar.S290059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xia F, Xie M, He J, Cheng D. Circ_0004140 promotes lung adenocarcinoma progression by upregulating NOVA2 via sponging miR-330-5p. Thorac Cancer. 2023;14(35):3483–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/1759-7714.15141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang X, Li J, Bian X, Wu C, Hua J, Chang S, Yu T, Li H, Li Y, Hu S, et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci U S A. 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.2012881118.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zhang J, Chen S, Wei S, Cheng S, Shi R, Zhao R, Zhang W, Zhang Q, Hua T, Feng D, et al. CircRAPGEF5 interacts with RBFOX2 to confer ferroptosis resistance by modulating alternative splicing of TFRC in endometrial cancer. Redox Biol. 2022. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.redox.2022.102493.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Yu Y, Fang L. CircRPAP2 regulates the alternative splicing of PTK2 by binding to SRSF1 in breast cancer. Cell Death Discov. 2022;8(1):152. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41420-022-00965-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang S, Zhang Y, Cai Q, Ma M, Jin LY, Weng M, Zhou D, Tang Z, Wang JD, Quan Z. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol Cancer. 2019;18(1):145. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-019-1078-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ge Z, Quek BL, Beemon KL, Hogg JR. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. Elife. 2016. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.11155.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zheng Z, Zeng X, Zhu Y, Leng M, Zhang Z, Wang Q, Liu X, Zeng S, Xiao Y, Hu C, et al. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis. Mol Cancer. 2024;23(1):4. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-023-01912-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shen X, Kong S, Ma S, Shen L, Zheng M, Qin S, Qi J, Wang Q, Cui X, Ju S. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene. 2022;41(42):4724–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41388-022-02449-w.

    Article  CAS  PubMed  Google Scholar 

  189. Kim J, Park RY, Chen JK, Kim J, Jeong S, Ohn T. Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5’-UTR region. Cell Death Differ. 2014;21(3):481–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/cdd.2013.171.

    Article  CAS  PubMed  Google Scholar 

  190. Ma Z, Chen H, Xia Z, You J, Han C, Wang S, Xia W, Bai Y, Liu T, Xu L, et al. Energy stress-induced circZFR enhances oxidative phosphorylation in lung adenocarcinoma via regulating alternative splicing. J Exp Clin Cancer Res. 2023;42(1):169. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-023-02723-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen D, Zhou H, Cai Z, Cai K, Liu J, Wang W, Miao H, Li H, Li R, Li X, et al. CircSCAP interacts with SF3A3 to inhibit the malignance of non-small cell lung cancer by activating p53 signaling. J Exp Clin Cancer Res. 2022;41(1):120. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-022-02299-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S, Tang Z. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis. 2023;14(1):20. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-022-05540-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y, Dai J, Zhang S, Yang Q, Yi Y, et al. Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Mol Cancer. 2019;18(1):13. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-019-0943-0.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Zhang D, Tao L, Xu N, Lu X, Wang J, He G, Tang Q, Huang K, Shen S, Chu J. CircRNA circTIAM1 promotes papillary thyroid cancer progression through the miR-646/HNRNPA1 signaling pathway. Cell Death Discov. 2022;8(1):21. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41420-021-00798-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shen P, Yang T, Chen Q, Yuan H, Wu P, Cai B, Meng L, Huang X, Liu J, Zhang Y, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol Cancer. 2021;20(1):51. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-021-01333-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xia Y, Lv J, Jiang T, Li B, Li Y, He Z, Xuan Z, Sun G, Wang S, Li Z, et al. CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. J Exp Clin Cancer Res. 2021;40(1):103. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-021-01896-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fu Z, Zhang P, Zhang R, Zhang B, Xiang S, Zhang Y, Luo Z, Huang C. Novel hypoxia-induced HIF1α-circTDRD3-positive feedback loop promotes the growth and metastasis of colorectal cancer. Oncogene. 2023;42(3):238–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41388-022-02548-8.

    Article  CAS  PubMed  Google Scholar 

  198. Wang Z, Yang L, Wu P, Li X, Tang Y, Ou X, Zhang Y, Xiao X, Wang J, Tang H. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022;21(1):29. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-022-01498-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Liu P, Wang Z, Ou X, Wu P, Zhang Y, Wu S, Xiao X, Li Y, Ye F, Tang H. The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Mol Cancer. 2022;21(1):198. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-022-01653-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen T, Wang X, Li C, Zhang H, Liu Y, Han D, Li Y, Li Z, Luo D, Zhang N, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene. 2021;40(15):2756–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41388-021-01739-z.

    Article  CAS  PubMed  Google Scholar 

  201. Zhao W, Cui Y, Liu L, Qi X, Liu J, Ma S, Hu X, Zhang Z, Wang Y, Li H, et al. Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ. 2020;27(3):919–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41418-019-0423-5.

    Article  CAS  PubMed  Google Scholar 

  202. Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, Liu X, Sun H, Pan Y, Wang S. The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 2018;17(1):160. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-018-0914-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gong LJ, Wang XY, Yao XD, Wu X, Gu WY. CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis. 2021;12(11):1081. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-021-04366-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, et al. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest. 2016;126(9):3219–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/jci76725.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Meng L, Zheng Y, Liu S, Ju Y, Ren S, Sang Y, Zhu Y, Gu L, Liu F, Zhao Y, et al. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett. 2021;519:117–29. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.canlet.2021.06.026.

    Article  CAS  PubMed  Google Scholar 

  206. Li Y, Kong Y, An M, Luo Y, Zheng H, Lin Y, Chen J, Yang J, Liu L, Luo B, et al. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2023;42(1):191. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-023-02757-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Vicens Q, Westhof E. Biogenesis of circular RNAs. Cell. 2014;159(1):13–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  208. Xin R, Gao Y, Gao Y, Wang R, Kadash-Edmondson KE, Liu B, Wang Y, Lin L, Xing Y. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat Commun. 2021;12(1):266. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-020-20459-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data analysis for the MinION nanopore sequencer. Nat Method. 2015;12(4):351–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nmeth.3290.

    Article  CAS  Google Scholar 

  210. Chiang TW, Jhong SE, Chen YC, Chen CY, Wu WS, Chuang TJ. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucl Acid Res. 2024;52(D1):D115-d123. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkad829.

    Article  Google Scholar 

  211. Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen CY, Chu Q, Chuang TJ, Dehghannasiri R, Dieterich C, Dong X, et al. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Method. 2023;20(8):1159–69. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41592-023-01944-6.

    Article  CAS  Google Scholar 

  212. Cao X, Zhou X, Hou F, Huang YE, Yuan M, Long M, Chen S, Lei W, Zhu J, Chen J, et al. ncRNADrug: a database for validated and predicted ncRNAs associated with drug resistance and targeted by drugs. Nucl Acid Res. 2024;52(D1):D1393-d1399. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkad1042.

    Article  Google Scholar 

  213. Bhattacharya A, Cui Y. SomamiR 2.0: a database of cancer somatic mutations altering microRNA-ceRNA interactions. Nucl Acid Res. 2016;44(D1):D1005-1010. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkv1220.

    Article  CAS  Google Scholar 

  214. Zhang W, Liu Y, Min Z, Liang G, Mo J, Ju Z, Zeng B, Guan W, Zhang Y, Chen J, et al. circMine: a comprehensive database to integrate, analyze and visualize human disease-related circRNA transcriptome. Nucl Acid Res. 2022;50(D1):D83-d92. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkab809.

    Article  CAS  Google Scholar 

  215. Feng J, Chen W, Dong X, Wang J, Mei X, Deng J, Yang S, Zhuo C, Huang X, Shao L, et al. CSCD2: an integrated interactional database of cancer-specific circular RNAs. Nucl Acid Res. 2022;50(D1):D1179-d1183. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkab830.

    Article  CAS  Google Scholar 

  216. Guo H, Zhang L, Cui X, Cheng L, Zhao T, Wang Y. SCancerRNA: expression at the single-cell level and interaction resource of non-coding RNA biomarkers for cancers. Genom Proteom Bioinform. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/gpbjnl/qzae023.

    Article  Google Scholar 

  217. Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Sign Transduct Target Ther. 2023;8(1):341. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41392-023-01561-x.

    Article  CAS  Google Scholar 

  218. Yi Z, Qu L, Tang H, Liu Z, Liu Y, Tian F, Wang C, Zhang X, Feng Z, Yu Y, et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol. 2022;40(6):946–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41587-021-01180-3.

    Article  CAS  PubMed  Google Scholar 

  219. Chen R, Wang SK, Belk JA, Amaya L, Li Z, Cardenas A, Abe BT, Chen CK, Wender PA, Chang HY. Engineering circular RNA for enhanced protein production. Nat Biotechnol. 2023;41(2):262–72. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41587-022-01393-0.

    Article  CAS  PubMed  Google Scholar 

  220. Ren S, Huang M, Bai R, Chen L, Yang J, Zhang J, Guo W, Ji W, Chen Y. Efficient modulation of exon skipping via antisense circular RNAs. Research (Wash D C). 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.4133/research.0045.

    Article  PubMed  Google Scholar 

  221. Wang X, Song H, Fang L, Wu T. EIF4A3-mediated circPRKCI expression promotes triple-negative breast cancer progression by regulating WBP2 and PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):92. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41420-022-00892-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ju C, Zhou M, Du D, Wang C, Yao J, Li H, Luo Y, He F, He J. EIF4A3-mediated circ_0042881 activates the RAS pathway via miR-217/SOS1 axis to facilitate breast cancer progression. Cell Death Dis. 2023;14(8):559. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-023-06085-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Huang X, Tan W, Liu Z, Fu X, Li Z, Lai S, Li Q, Zhong X, Qu F, Zhang H, et al. EIF4A3-induced circZFAND6 promotes breast cancer proliferation and metastasis through the miR-647/FASN axis. Life Sci. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.lfs.2023.121745.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Meng X, Li W, Meng Z, Li Y. EIF4A3-induced circBRWD3 promotes tumorigenesis of breast cancer through miR-142-3p_miR-142-5p/RAC1/PAK1 signaling. BMC Cancer. 2022;22(1):1225. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12885-022-10200-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Huang WH, Yang Q, Zhang C. eIF4A3-induced circWAC promotes breast cancer progression through mediating miR-599/E2F3 axis. Kaohsiung J Med Sci. 2022;38(4):321–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/kjm2.12496.

    Article  CAS  PubMed  Google Scholar 

  226. Liu Q, Dong H. EIF4A3-mediated hsa_circ_0088088 promotes the carcinogenesis of breast cancer by sponging miR-135-5p. J Biochem Mol Toxicol. 2021;35(11): e22909. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbt.22909.

    Article  CAS  PubMed  Google Scholar 

  227. Wei W, Liu K, Huang X, Tian S, Wang H, Zhang C, Ye J, Dong Y, An Z, Ma X, et al. EIF4A3-mediated biogenesis of circSTX6 promotes bladder cancer metastasis and cisplatin resistance. J Exp Clin Cancer Res. 2024;43(1):2. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-023-02932-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Guan C, Liu L, Zhao Y, Zhang X, Liu G, Wang H, Gao X, Zhong X, Jiang X. YY1 and eIF4A3 are mediators of the cell proliferation, migration and invasion in cholangiocarcinoma promoted by circ-ZNF609 by targeting miR-432–5p to regulate LRRC1. Aging (Albany NY). 2021;13(23):25195–212. https://doiorg.publicaciones.saludcastillayleon.es/10.18632/aging.203735.

    Article  CAS  PubMed  Google Scholar 

  229. Jiang Z, Tai Q, Xie X, Hou Z, Liu W, Yu Z, Liang Z, Chen S. EIF4A3-induced circ_0084615 contributes to the progression of colorectal cancer via miR-599/ONECUT2 pathway. J Exp Clin Cancer Res. 2021;40(1):227. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-021-02029-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang Y, Wang X, Liu W, Lei T, Qiao T, Feng W, Song W. CircGLIS3 promotes gastric cancer progression by regulating the miR-1343-3p/PGK1 pathway and inhibiting vimentin phosphorylation. J Transl Med. 2024;22(1):251. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12967-023-04625-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hou G, Zuo H, Shi J, Dai D, Wang H, Song X, Xu G, Tao G. EIF4A3 induced circABCA5 promotes the gastric cancer progression by SPI1 mediated IL6/JAK2/STAT3 signaling. Am J Cancer Res. 2023;13(2):602–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Sun D, Wang G, Xiao C, Xin Y. Hsa_circ_001988 attenuates GC progression in vitro and in vivo via sponging miR-197-3p. J Cell Physiol. 2021;236(1):612–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcp.29888.

    Article  CAS  PubMed  Google Scholar 

  233. Li F, Song W, Wu L, Liu B, Du X. EIF4A3 induced circGRIK2 promotes the malignancy of glioma by regulating the miR-1303/HOXA10 axis. Am J Cancer Res. 2023;13(12):5868–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Li X, Wang C, Chen G, Zou W, Deng Y, Zhou F. EIF4A3-induced circCCNB1 (hsa_circ_0001495) promotes glioma progression by elevating CCND1 through interacting miR-516b-5p and HuR. Metab Brain Dis. 2022;37(3):819–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11011-021-00899-x.

    Article  CAS  PubMed  Google Scholar 

  235. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer. 2018;17(1):166. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12943-018-0911-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kong R, Wei W, Man Q, Chen L, Jia Y, Zhang H, Liu Z, Cheng K, Mao C, Liu S. Hypoxia-induced circ-CDYL-EEF1A2 transcriptional complex drives lung metastasis of cancer stem cells from hepatocellular carcinoma. Cancer Lett. 2023. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.canlet.2023.216442.

    Article  PubMed  Google Scholar 

  237. Liu Y, Song J, Zhang H, Liao Z, Liu F, Su C, Wang W, Han M, Zhang L, Zhu H, et al. EIF4A3-induced circTOLLIP promotes the progression of hepatocellular carcinoma via the miR-516a-5p/PBX3/EMT pathway. J Exp Clin Cancer Res. 2022;41(1):164. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13046-022-02378-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lu L, Zeng Y, Yu Z, Chen S, Xie J, Rao B, Yang B, Qiu F, Lu J, Yang L. EIF4a3-regulated circRABL2B regulates cell stemness and drug sensitivity of lung cancer via YBX1-dependent downregulation of MUC5AC expression. Int J Biol Sci. 2023;19(9):2725–39. https://doiorg.publicaciones.saludcastillayleon.es/10.7150/ijbs.78588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhou X, Yuan G, Wu Y, Yan S, Jiang Q, Tang S. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci. 2022;79(7):357. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00018-022-04350-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zhao Q, Zhu Z, Xiao W, Zong G, Wang C, Jiang W, Li K, Shen J, Guo X, Cui J, et al. Hypoxia-induced circRNF13 promotes the progression and glycolysis of pancreatic cancer. Exp Mol Med. 2022;54(11):1940–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s12276-022-00877-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ding L, Zheng Q, Lin Y, Wang R, Wang H, Luo W, Lu Z, Xie H, Ren L, Lu H, et al. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med. 2023;13(1): e1156. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/ctm2.1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Chen D, Wang Y, Yang F, Keranmu A, Zhao Q, Wu L, Han S, Xing N. The circRAB3IP mediated by eIF4A3 and LEF1 contributes to enzalutamide resistance in prostate cancer by targeting miR-133a-3p/miR-133b/SGK1 pathway. Front Oncol. 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fonc.2021.752573.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Deng LQ, Shi CJ, Zhou ST, Zeng WQ, Xian YF, Wang YY, Fu WM, Lin HL, Liu W, Zhang JF. EIF4A3-negatively driven circular RNA β-catenin (circβ-catenin) promotes colorectal cancer progression via miR-197-3p/CTNND1 regulatory axis. Br J Cancer. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41416-024-02612-y.

    Article  PubMed  Google Scholar 

  244. Wang G, Sun D, Li W, Xin Y. CircRNA_100290 promotes GC cell proliferation and invasion via the miR-29b-3p/ITGA11 axis and is regulated by EIF4A3. Cancer Cell Int. 2021;21(1):324. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12935-021-01964-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yu M, Cao H, Yang J, Liu T, Gao J, Wang B. EIF4A3-regulated hsa_circ_0001445 can inhibit the progression of laryngeal squamous cell carcinoma via hsa-miR-432-5p-dependent up-regulation of RGMA expression. Cell Cycle. 2023;22(18):2038–56. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/15384101.2023.2274670.

    Article  CAS  PubMed  Google Scholar 

  246. Zhao S, Xiao M, Li L, Zhang H, Shan M, Cui S, Zhang L, Zhang G, Wu S, Jin C, et al. A unique circ_0067716/EIF4A3 double-negative feedback loop impacts malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene. Sci Total Environ. 2024. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.scitotenv.2024.171349.

    Article  PubMed  Google Scholar 

  247. Zhao M, Liu Y, Qu H. circExp database: an online transcriptome platform for human circRNA expressions in cancers. Database (Oxford). 2021. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/database/baab045.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Chen Y, Yao L, Tang Y, Jhong JH, Wan J, Chang J, Cui S, Luo Y, Cai X, Li W, et al. CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers. Nucl Acid Res. 2022;50(D1):D93-d101. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkab1036.

    Article  CAS  Google Scholar 

  249. Lan W, Zhu M, Chen Q, Chen B, Liu J, Li M, Chen YP. CircR2Cancer: a manually curated database of associations between circRNAs and cancers. Database (Oxford). 2020. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/database/baaa085.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Zhang J, Yan S, Li R, Wang G, Kang S, Wang Y, Hou W, Wang C, Tian W. CRMarker: a manually curated comprehensive resource of cancer RNA markers. Int J Biol Macromol. 2021;174:263–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijbiomac.2021.01.186.

    Article  CAS  PubMed  Google Scholar 

  251. Gao Y, Shang S, Guo S, Li X, Zhou H, Liu H, Sun Y, Wang J, Wang P, Zhi H, et al. Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Nucl Acid Res. 2021;49(D1):D1251-d1258. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/nar/gkaa1006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was created with BioRender.com

Funding

This work was partially supported by the National Natural Foundation of China (project no. 82272664, to C.T.; project no. 82172500, to Z.L.), The Science and Technology Innovation Program of Hunan Province (project no. 2023RC3085, to C.T.), Hunan Provincial Health High-Level Talent Scientific Research Project (project no. R2023054, to C.T.), Hunan Provincial Natural Science Foundation of China (project no. 2022JJ30843, to C.T.), Hunan Provincial Administration of Traditional Chinese Medicine Project (project no. D2022117, to C.T.), and the Scientific Research Program of Hunan Provincial Health Commission (project no. B202304077077, to C.T.).

Author information

Authors and Affiliations

Authors

Contributions

H.H., C.T., and Z.L. contributed to the conception of the study; H.H., J.T., and H.W. drafted the original manuscript, tables, and figures; C.T., X.G., and Z.L. revised the manuscript. All of the authors contributed to the approval of the paper.

Corresponding authors

Correspondence to Xiaoning Guo, Chao Tu or Zhihong Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors have declared that no competing interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Tang, J., Wang, H. et al. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 29, 142 (2024). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s11658-024-00662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s11658-024-00662-x

Keywords