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Abstract: The ubiquitin-proteasome system is responsible for the degradation of 
most intracellular proteins, including those that control cell cycle progression, 
apoptosis, signal transduction and the NF-κB transcriptional pathway. 
Aberrations in the ubiquitin-proteasome system underlie the pathogenesis of 
many human diseases, so both the ubiquitin-conjugating system and the 20S 
proteasome are important targets for drug discovery. This article presents a few 
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of the most important examples of the small molecule inhibitors and modulators 
targeting the ubiquitin-proteasome system, their mode of action, and their 
potential therapeutic relevance in the treatment of cancer and inflammatory-
related diseases.  
 
Key words: E3 ubiquitin ligases, Proteasome, Inhibitors, Modulators, 
Therapeutic potential, Cancer, Stroke, Cardiovascular diseases   
 
INTRODUCTION 
 
The ubiquitin-proteasome system (UPS) is of key importance in the targeted 
degradation of the bulk proteins (80-90%) in the cell [1]. Such proteins include 
misfolded or mutated proteins, viral proteins and many of the short-lived 
proteins that control cell division (e.g. cyclins, cyclin-dependent kinase 
inhibitors), apoptosis (e.g. p53, Bax, caspases), and signal transduction and gene 
expression (e.g. NF-κBp105, IκB, HIF-1, c-fos, c-jun). For the discovery of the 
ubiquitin-mediated protein degradation pathway, Aaron Ciechanover, Avram 
Hershko and Irwin Rose were awarded the 2004 Nobel Prize in Chemistry. Their 
pioneering work led to the discovery that abnormal activation or failure of 
ubiquitin-mediated proteolysis underlies the pathogenesis of various debilitating 
diseases (i.e. cancer, inflammation, cardiovascular diseases, neurodegenerative 
disorders) [1-4], indicating that the ubiquitin-proteasome system is an attractive 
target for pharmacological intervention [2, 5-7].  
 

 
 
Fig. 1. The UPS as a target for pharmacological intervention [1, 2, 5, 6, 13]. One common 
ubiquitin-activating enzyme (E1) activates ubiquitin in an ATP-dependent fashion. Then, 
the ubiquitin is transferred from the active-site cysteine in E1 to the catalytic cysteine in the 
active site of several different ubiquitin-conjugating enzymes (E2s). Several hundreds of 
different ubiquitin-protein ligases (E3s) select the target protein and transfer activated 
ubiquitin to generate the polyubiquitin chain. The polyubiquitinated protein is then 
recognized by the 19S regulator and directed to the 20S proteasome for destruction, 
following the removal of the ubiquitin chain by deubiquitinating enzymes (DUBs).  
E3 ligase inhibitors prevent protein ubiquitination and degradation. Small molecule 
proteolysis inducers direct disease-promoting proteins for ubiquitination and degradation. 
Proteasome inhibitors block the degradation of the ubiquitinated proteins by binding to the 
proteolytically active subunits located in two of the inner β-rings of the 20S core particle. 
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In general, protein degradation via the ubiquitin-proteasome pathway involves 
several successive steps employing different classes of enzyme, namely 
ubiquitin-activating enzyme (E1), the ubiquitin-conjugating enzymes (E2s), the 
ubiquitin-protein ligases (E3s), the 20S proteasome, and the deubiquitinating 
enzymes (DUBs). These can potentially be targeted for inhibition in the context 
of cancer and other diseases (Fig. 1). Indeed, a number of small-molecule 
inhibitors and modulators directed against the UPS components have been 
described in the biomedical literature as potential anticancer or anti-
inflammatory drugs [5-9]. However, many of them have limited therapeutic 
usefulness due to their lack of selectivity and high levels of cytotoxicity against 
normal cells. Those with great therapeutic value include the small-molecule 
inhibitors of the E3 ubiquitin ligases specific for tumor suppressors (i.e. p53, p27) 
and IκB [7], the highly selective inhibitors of the 20S proteasome [8, 10-12], and 
the small molecule proteolysis inducers triggering tumor-promoting proteins for 
ubiquitination and degradation [13]. They are presented below. 
 
TARGETING SPECIFIC E3 UBIQUITIN LIGASES IN CANCER  
  
The most extensively studied E3 ligase as a drug target in cancer is the Mdm2 
(murine double minute 2), which binds and ubiquitinates the tumor suppressor 
protein p53 [14]. p53 functions as a “guardian of the genome”, inducing the 
expression of many genes regulating cell-cycle arrest, DNA repair and apoptosis 
after DNA damage, thus preventing mutagenesis and carcinogenesis. A reduced 
level of p53 and overexpression of the Mdm2 or Hdm2 (human counterpart of 
Mdm2) have been found for many tumors carrying wild-type p53, such as 
neuroblastoma, acute lymphoblastic leukemia (ALL), melanomas, and 
colorectal, lung and breast carcinomas [2, 7], and projects involving Mdm2 
inhibition with either antisense oligonucleotides or small-molecule inhibitors are 
currently underway [5, 7, 15-17]. For example, a crystal structure analysis of the 
p53-binding pocket in Mdm2 and a screening of the National Cancer Institute 
chemical library led to the identification of two structurally different 
compounds, named Nutlins and RITA (Reactivation of p53 and Induction of 
Tumor cell Apoptosis), which blocked Mdm2-p53 interaction and prevented  
p53 ubiquitination and degradation in many cancer cell lines [15-17]. Nutlins 
(cis-imidazoline analogs) bind directly to the p53-binding pocket in Mdm2 [15], 
whereas RITA (2,5-bis(5-hydroxymethyl-2-thienyl)furan) binds directly to  
p53 [16]. Both compounds have been shown to induce cell cycle arrest and 
apoptosis in cell-based studies, and to inhibit tumor growth in nude mouse tumor 
xenografts [15-17]. More studies are required to find out whether Nutlins and 
RITA target p53-related proteins (i.e. p63 and p73) and whether the in vivo 
activity of these compounds  is exclusively limited to tumor tissues.   
The SCFSKP2 ligase (a member of the Skp1-Cullin-F-box protein complex) 
recognizes and ubiquitinates several negative cell-cycle regulators, including the 
cyclin-dependent kinase (CDK) inhibitor p27 [1]. The high level of the  
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Skp2 component (S-phase kinase associated protein 2) and the low level of its 
substrate, p27, have been shown to correlate with a poor prognosis in many 
human cancer types, such as gliomas, lymphomas, and cancer of the prostate, 
colorectum, lung and breast [2, 18]. Several studies have demonstrated that 
inhibiting Skp2 using small interfering RNA (siRNA) or anti-Skp2 antibodies 
increases the level of p27, resulting in apoptosis induction and cell growth arrest 
in vitro and in animal models [5, 7]. Attempts to design small molecules that 
could disrupt the interaction of Skp2 and p27 are now in progress.  
Another potential target for anticancer drug research is the SCFβTRCP ligase that 
ubiquitinates IκB, an inhibitor of the nuclear factor-κB (NF-κB) [19, 20]. In 
normal cells, NF-κB resides in the cytoplasm in an inactive form, bound to IκB. 
Upon cell exposure to various extracellular signals (e.g. proinflammatory 
cytokines, phorbol esters, growth factors, certain chemotherapeutic substances, 
and radiation), IκB is rapidly phosphorylated on Ser 32 and 36 by the multimeric 
IκB kinases, ubiquitinated by the SCFβTRCP, and subsequently degraded by the 
26S proteasome (Fig. 2). As a result, free NF-κB translocates into the nucleus, 
where it promotes the induction of many specific genes, the products of which 
 

 
 
Fig. 2. The ubiquitin-proteasome inhibitors targeting the NF-kB activation pathway  
[7, 21, 24, 25]. Upon exposure of the cells to various stimuli, the IκB kinases (IKKs) 
rapidly phosphorylate the IκB, which is then ubiquitinated by the SCFβTRCP ligase and 
subsequently degraded by the 26 proteasome. The free NF-κB translocates into the 
nucleus, where it activates a number of genes involved in cancer progression and 
inflammation. The SCFβTRCP inhibitors prevent pIκB ubiquitination resulting in the 
inhibition of its degradation by the 26S proteasome. The inhibitors of the  
20S proteasome block the degradation of ubiquitinated IκB, resulting in the blockage of 
NF-κB nuclear translocation and gene activation. 
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suppress apoptosis, induce cell proliferation, promote angiogenesis and 
metastasis, and potentate inflammation [19, 20]. Therefore, small-molecule 
inhibitors that target the NF-κB activation pathway, including proteasome 
inhibitors (see below) have great therapeutic potential in the treatment of many 
human cancers, particularly cancers resistant to conventional therapy, and in the 
treatment of inflammatory-related disorders [21]. It has been shown by many 
authors that silencing of the βTrPC component (β-transducin repeat-containing 
proteins) by siRNA inhibits NF-κB activation and reduces chemoresistance in 
cancer cell lines [5, 7, 21]. Moreover, identifying the putative recognition motif 
(pIκBα) in the βTrCP allowed the synthesis of a short IκB phosphopeptide 
antagonist that, after microinjection, inhibited IκBα degradation in TNF-
stimulated HeLa cells [22]. It should be mentioned that βTrCP recognizes the 
same double-phosphorylated destruction motif in numerous other proteins, 
including the transcription factor β-catenin, which is known to be involved in 
cellular transformation [5, 7]. Furthermore, the novel, highly selective inhibitor 
Ro106-9920 blocks IκB ubiquitination and prevents NF-κB activation by 
targeting another, as-yet unidentified, IκB E3 ligase [23]. 
 
PHARMACOLOGICAL INHIBITORS OF THE 20S/26S  PROTEASOME 
 
The 20S proteasome, a catalytic core particle of the 26S proteasome, exhibits 
three main catalytic activities: chymotrypsin-like (ChT-L), trypsin-like (T-L) 
and caspase-like (C-L) [26]. These are respectively associated with three distinct 
subunits: β5, β2 and β1 (Fig. 1) [27]. Specific forms of the 20S proteasomes, the 
so-called immunoproteasomes, contain three novel interferon gamma-inducible 
protein subunits termed β5i (LMP7), β2i (MELC1, LMP10) and β1i (LMP2), 
instead of the standard subunits (β5, β2 and β1) [28]. The standard 20S 
proteasomes are present in most mammalian cells, while the 
immunoproteasomes are expressed constitutively in cells of lymphoid origin, 
where they play a major role in the generation of peptide antigens presented on 
MHC class I molecules [28].   
A number of structurally different inhibitors of the 20S proteasome/ 
immunoproteasome were discovered and tested in experimental settings [8, 24, 25]. 
These include synthetic peptide-based inhibitors (i.e. peptide aldehydes, 
boronates, sulfonates), and compounds isolated from biological extracts on the 
grounds of their initial anticancer and anti-inflammatory activities  
(i.e. lactacystin, epoxomicin, eponemycin) [8]. The so-called “classical 
proteasome inhibitors” bind covalently to the catalytic active N-terminal 
threonine (Thr1Oγ), and predominantly inhibit its chymotrypsin-like activity, 
which is rate-limiting in intracellular protein degradation by the proteasomes [8, 27].  
In preclinical studies, a dipeptide boronate PS-341 (bortezomib) fulfilled all the 
criteria for the treatment of cancer [24, 29-31]:  
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1. It selectively and reversibly blocked ChT-like activity;  
2. It showed cytotoxity against 60 cancer cell lines derived from multiple 

human tumors in the National Cancer Institute in vitro screen, and exhibited 
relatively few toxic effects on normal cells;  

3. It induced apoptosis in tumor cells resistant to chemotherapy or radiation;  
4. It down-regulated cytokine-induced expression of IL-6, TNF-α, VCAM-1 

and VEGF; and  
5. It showed effectiveness in human tumor xenograft models of a wide range of 

hematological malignancies and solid tumors, both as a single agent and in 
combination with standard chemotherapeutics. 

On this basis, bortezomib (Velcade™) was approved by the US Food and Drug 
Administration (FDA) and by the European Medicines Agency (EMEA) for the 
treatment of patients with relapsed and refractory multiple myeloma (MM). The 
major molecular mechanisms through which it mediates anti-MM activity 
involve the induction of p53-dependent and p53-independent apoptotic pathways 
in MM cells resistant to conventional therapy, and down-regulation of the 
expression of several tumor-promoting proteins in bone marrow stromal cells 
(BMSCs) through the inhibition of the NF-κB activation pathway [12, 32, 33]. 
Moreover, gene expression profiling and proteomic analysis of the MM cells 
have demonstrated that bortezomib down-regulates the expression of several 
proteins involved in the cellular response to genotoxic stress [34]. Currently, 
bortezomib is in use in clinical trails for the treatment of other hematological 
neoplasias and solid tumors, including refractory indolent and aggressive B-cell 
lymphoma, mantle cell lymphoma, non-Hodgkin’s lymphoma, relapsed 
leukemia, malignant metastatic melanoma, non-small lung cancer, and breast 
cancer [12, 35]. Detailed information concerning the pharmacology, 
pharmacokinetics and practical application of bortezomib in MM patients and 
other cancer patients can be found at the National Cancer Institute Web site 
(www.cancer.gov). In general, bortezomib appears to be well tolerated with 
mild/moderate and manageable side effects. In MM patients, it produced  
a 35% overall response rate and 10% complete responses.  
A new generation of proteasome inhibitors that are now being explored in 
preclinical studies include noncovalent reversible inhibitors (e.g. indanone-
substituted peptides, cyclic tripeptide TMC-95, 2-aminobenzyl-satatine 
derivative) [9, 27], and covalently bound inhibitors that block all three activities 
(i.e. ChT-L, T-L and C-L) or that specifically block immunoproteasomes  
[9-12, 36-38]. Two of them, namely NPI-0052 (salinosporamide A) and PR-171 
(carfilzomib) have been found to induce apoptosis in multiple myeloma cells 
resistant to bortezomib and other chemotherapeutics [10, 37, 39]. NPI-0052 is an 
irreversible, lactacystin-related inhibitor that blocks all three proteasomal 
activities [36], and unlike bortezomib, it induces apoptosis predominantly 
through caspase-8 activation [39]. It also exerts strong antiproliferative and 
proapoptotic effects on lymphocytes from patients with chronic lymphocytic 
leukemia (CLL) [40]. The second inhibitor, PR-171, is a derivative of 
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epoxomicin that irreversibly inhibits the chymotrypsin-like activity of both the 
standard proteasomes and immunoproteasomes, and is a more effective inducer 
of apoptosis than bortezomib in multiple myeloma cells [37] and primary human 
acute myeloid leukemia cells (AML) [41]. Since immunoproteasomes are highly 
expressed in some cells of hematopoietic origin [28], it is suggested that small-
molecule inhibitors targeting LMP-immunosubunits may have the ability to 
induce apoptosis only in hematological malignancies while sparing other tissues 
[12]. Both inhibitors (NPI-0052 and PR-171) showed effectiveness in preclinical 
models of multiple myeloma, and they are currently undergoing early clinical 
trials [10].   
Due to the critical role of the ubiquitin-proteasome pathway in the activation of 
NF-κB, proteasome inhibitors have been also extensively studied in various 
animal models of inflammatory-related diseases [8, 25, 42]. For example,  
MLN-519 (a synthetic analogue of the clasto-lactacystin/β-lactone) exerted 
significant anti-inflammatory activity, and hence, limited the ischemic tissue 
damage in animal models of focal and middle cerebral ischemia [43-47], and 
myocardial reperfusion injury [48-50]. Currently, MLN-519 is in phase one 
clinical trials for safety in acute dosing regimens [42, 51]. Importantly,  
a structurally different proteasome inhibitor, CVT-634, has been also shown to 
block the NF-κB activation pathway and to reduce infarct volume in a focal 
model of cerebral ischemia [52]. Moreover, lactacystin/β-lactone and the peptide 
aldehyde PSI (Z-Ile-Glu (Ot-Bu)-Ala-Leucinal) have been shown to inhibit acute 
renal failure (ARF) in rats through the suppression of endothelin-1 (ET-1) 
production in the aorta and the kidney via NF-κB inhibition [53, 54], as well as 
to prevent the development of hypertension and vascular hypertrophy in an 
experimental model of deoxycortycosterone-salt-induced hypertension [53]. 
More recently, we demonstrated that PSI reduces thrombus formation in an 
experimental model of arterial thrombosis in renovascular hypertensive rats [55]. 
The exact mechanism through which PSI exerts antithrombotic activity is not yet 
known, but there exists evidence that the inhibition of 26S proteasome-mediated 
NF-κB activation is sufficient to block the expression of the tissue factor (TF) in 
monocytes during extracorporeal circulation [56], as well as in TNF- or 
angiotensin II-activated endothelial cells [57]. However, the major 
disadvantages of PSI and  lactacystin/β-lactone as drug candidates include their 
poor stability and lack of specificity within cells. PSI inhibits calpains and 
cathepsin B [8], while lactacystin/β-lactone inhibits lysosomal cathepsin A [58] 
and cytosolic tripeptidyl peptidase II [59]. 
 
THE THERAPEUTIC POTENTIAL OF SMALL-MOLECULE 
PROTEOLYSIS INDUCERS IN CANCER 
 
A new avenue of pharmacological intervention into the ubiquitin-proteasome 
system is to target cancer-promoting proteins for ubiquitination and degradation 
by the 26S proteasomes (Fig. 1) [13]. Several protein-based chimeric molecules 
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have been designated to destroy β-catenin, Rb protein, cyclin A, cdk 2; however, 
this class of compounds requires a special delivery system (viral or liposomal 
vehicle), which makes them poor drug candidates [13].  
Two types of small molecule proteolysis inducers, named Protacs (proteolytic 
targeting chimeric molecules) [60] and SMPI (small molecule proteolysis 
inducers) [61] appear to be promising therapeutics for the future. They consist of 
an SCFβ-TRCP-binding phosphopeptide derived from IκBα (10-amino acid 
IκBαphosphopeptide domain) (Protacs) or a pVHL (phosphorylated von Hippel-
Lindau tumor suppressor) ligase E3-binding octapeptide (SMPIs) linked 
covalently to the following ligands: 1. An anti-angiogenic inhibitor (ovalicin or 
fumagillol) that recognizes the metionine aminopeptidase-2 (Met-AP-2);  
2. Estradiol, which noncovalently binds to the estrogen receptor implicated in 
the progression of breast cancer; or 3. Dihydroxytestosterone (DHT), which 
recognizes the androgen receptor, a known promotor of prostate cancer growth. 
Thus, following binding, the target protein is ubiquitinated by the SCFβ-TRCP 
ligase or pVHL E3 ligase, and then degraded by the 26S proteasome. Both 
small-molecule proteolysis inducers have been successfully used in cell-free 
systems and in living cancer cells [60-62].  
 
CONCLUSION 
 
Targeting the ubiquitin-proteasome pathway is a new concept in therapy for 
many human diseases, particularly cancer and inflammatory-related diseases. 
Two different proteasome inhibitors entered clinical trails for the treatment of 
cancer (bortezomib) and stroke patients (MLN-519); the first is already on the 
market. Moreover, rapid progress in combinatorial chemistry, structure-based 
design and the screening of pharmaceutical companies’ small-molecule libraries 
have accelerated developments in the identification of new classes of 
proteasome/immunoproteasome inhibitors. Researchers are cautiously optimistic 
that these may become anticancer drugs with better potency and lower toxicities. 
This is of particular relevance in the light of the findings that the UPS function is 
of paramount importance for the maintenance of cellular homeostasis, and its 
complete blockage is lethal for the individual cell and the organism as a whole. 
Because of this, much attention is now being paid to the development of small-
molecule compounds that could block the degradation of cancer-preventing 
proteins at the level of their ubiquitination (i.e. E3 ligase inhibitors) or could 
target cancer-promoting proteins for ubiquitination and degradation (i.e. small 
molecule proteolysis inducers). It is now considered that such modulators may 
offer greater therapeutic promise in certain malignancies, and probably in other 
diseases, than the classical inhibitors of the 20S proteasome.  
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