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Abstract: In this paper, a new method is described for the horizontal 
electrophoresis of cells on a density cushion under near-isopycnic conditions. 
When cell sedimentation is minimized, the electrophoresis of red blood cells 
(RBC) used as model cells within an anti-convective porous matrix (with pores 
over 300 μm in diameter) was capable of separating a mixture of human and 
chicken RBC according to their electrophoretic mobilities. Samples taken from 
the separated RBC bands show over 90% purity for each species. The 
simultaneous electrophoresis of several RBC samples carried out under identical 
conditions permitted the use of comparative data based on the electrophoretic 
mobility of cells which differ in their surface properties. We believe that this 
relatively simple system, in which cell sedimentation and convection are 
minimized, has the potential to be modified and adapted for the separation of 
other cell types/organelles.   
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INTRODUCTION 
 
Electrophoretic methods are relatively cheap, and simple and effective for the 
separations of ions, low molecular weight molecules (for example dyes, amino 
acids, nucleotides), proteins and nucleic acids [1-6]. Microscopic observations of 
individual cells undergoing electrophoresis have been extensively applied in 
research concerning the electrochemical surface properties of cells and/or 
cellular organelles [7-13]. It was demonstrated that during cell differentiation, 
cell cycle phases and neoplastic transformation of cells, and under other 
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pathological conditions, changes in electrophoretic mobility are often associated 
with cell surface changes [14-19]. The heterogeneity of cell populations isolated 
from animal tissues and in cell lines expanded in vitro has been shown via 
microelectrophoretic methods [18, 20-22]. Cell surface properties can also be 
experimentally modified in a variety of ways, and this can be traced by 
measurements of cell electrophoretic mobility [11, 16, 17, 23-25]. 
The application of microscopic methods to monitor cell electrophoresis revealed 
the potential of electrophoresis in the study of cell surface properties. The 
differences in electrophoretic mobility between different cells have been 
postulated to be useful for the separation of cell subpopulations differing in their 
surface properties. However, electrophoretic methods suitable for preparative 
cell separations, although studied for many years, are not as yet in common use 
in cell biology laboratories. The most advanced studies using preparative and 
analytical electrophoresis of cells and cellular organelles have so far been carried 
out with vertical density gradient electrophoresis [18, 26-28], and in particular 
with the free-flow curtain electrophoresis apparatus designed by Heidrich and 
Hannig [5, 20, 29, 30], subsequently modified for commercial markets [4, 31-
33]. Those methods showed that electrophoresis could effectively subfractionate 
cells and/or cellular organelles, and enabled the study of biological particle 
surfaces [22, 34, 35]. However, the high cost and complex equipment required 
for density gradient electrophoresis and the difficulties and laboriousness 
associated with free-flow electrophoresis instruments have limited more 
common usage of these methods [31]. In recent years, more attention has been 
paid to developing micro-methods suitable for the rapid separation and 
identification of small samples of cell suspensions [36]. 
The goal of our experiments was to develop a simple eletrophoretic method for the 
separation of cell subpopulations and for studies of cell surface properties. Our 
primary experiments, presented here, were carried out with RBC, which are 
commonly used for the standardization of cell electrophoresis methods [37-43] and 
in research on blood cells with diagnostic and therapeutic purposes [15, 43-45].    
 
MATERIAL AND METHODS 
 
Cell preparation 
Fresh human blood was obtained by veinpuncture and fresh arterial blood was 
collected from chickens. The blood was collected into test-tubes (Corning 
GmbH Life Sciences, Wiesbaden, Germany) with 4% citrate added as an 
anticoagulant. Each blood sample was added to phosphate buffered saline (PBS) 
at a ratio of 1 to 9 and centrifuged at 1000 rpm for 5 min at room temperature. 
The supernatant was discarded and the red blood cells were washed twice with 
PBS. After washing, the pellet of RBC was resuspended in 7% sucrose in 
deionized water for electrophoretic separation or in PBS for sedimentation 
experiments. The RBC suspension was then mixed 1:1 with an electrophoresis 
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or sedimentation solution, and the number of cells was determined using  
a Bürker haemacytometer (Superior, Marienfeld, Germany).  
 
Solutions 
The sedimentation and electrophoresis solutions contained: dextrans, MW 
15000-20000 Da (MP Biomedicals, LLC, Eschwege, Germany); sucrose (PoCh, 
Gliwice, Poland); and PBS with Ca, Mg (Biomed, Lublin, Poland).  
Each solution was characterized for: osmolarity determined with a freezing-point 
osmometer (Marcel os 3000, Marcel, Warszawa, Poland); density with a glass 
pycnometer, viscosity with an Ostwald’s type viscometer or Ubbelohole 
viscometer (Schott, Mainz, Germany); and conductivity with an electric 
conductivity meter (Radeliks, Hungary). The reagents used to prepare the 
electrode solutions and agar bridges were: PBS with Ca, Mg (Biomed, Lublin, 
Poland); agar (Sigma-Aldrich Chemie, Steinheim, Germany); and NaCl, 
NaHCO3 and phenol red (POCh, Gliwice, Poland). 
The reagents used to prepare the various dyes and fluorescent mixtures were: 
Trypan blue (Lachema, Praga, Czech Republic), Lissamine green (BDH 
chemicals LTD, Poole, England), Calcein (Sigma-Aldrich Chemie GmbH, 
Steinheim, Germany), Azur II (IE, Berkshire, England), Neutral red (Sigma-
Aldrich Chemie GmbH, Steinheim, Germany), and Rhodamine S (Serva, 
Heidelberg, Germany). To visualize the fluorescent dyes, the electrophoresis 
chamber was illuminated with UV light (EMITA VP-60, Łódź, Poland). 
 
Human RBC sedimentation 
RBC sedimentation was observed in calibrated 15 ml test tubes. One ml of RBC 
suspension, mixed 1:1 with the sedimentation solutions described in Tab. 1, was 
gently layered on the top of 9 ml of the sedimentation solution. The cell density 
was 3.5 x 105 RBC per ml, and sedimentation was observed and photographed 
with a digital camera (Camedia C-3040 ZOOM, Olympus Optical co., LTD., 
Tokyo, Japan) at 30 min intervals for 3 h at room temperature. 
 
Electrophoresis  equipment and RBC electrophoresis conditions 
RBC electrophoresis was carried out in an apparatus made of Plexiglass 
(polymethacrylate) or polycarbonate constructed in the faculty workshop and 
shown diagrammatically in Fig. 1. The apparatus was equipped with Ag/AgCl 
electrodes located in electrode compartments. Between the electrode and 
electrophoresis compartments, agar bridges (2.5% agar in 0.9% NaCl) were used 
to prevent mixing of the electrode and electrophoresis solutions. The negative 
cathode compartment was filled with 4 ml 0.8% Tris + 0.9% NaCl in deionized 
water, and the positive anode compartment was filled with 4 ml 0.8% NaHCO3 

+ 0.9% NaCl in deionized water. Both electrode solutions contained phenol red 
as a pH indicator. The central compartment contained a polyurethane sponge 
(PU) (the Chair of Biomaterials of the University of Science and Technology, 
AGH, Cracow, Poland and Interchemall Dom Sp. z o.o., Warsaw, Poland) with  
a thickness of 3 mm and a pore diameter of 300 μm, and two electrophoresis 
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solutions described in the Results section below. Voltage was applied 
(GibcoBRL type Electrophoresis Power Supply LTI PS304, France) at 5-7 V/cm 
and 21 mA both before and after the addition of RBC; the temperature of the 
electrophoresis medium was measured with a digital thermoelectric couple 
(Amaren Electronic, Kreuzwertheim, Denmark). 
 
 

 
Fig. 1. Diagram of the electrophoresis chamber and the Ag/AgCl electrodes. 
 
The PU sponge shown in Fig. 1 was first covered and saturated with 13 ml of 
high density dextran solution (12 g dextran and 6 g sucrose in 100 ml of 10 
times diluted PBS in deionized H2O), taking care to eliminate all the air bubbles. 
This “density cushion” approximately half-filled the electrophoresis chamber, 
and was carefully overlaid with an upper sucrose solution (7.6 g sucrose in 100 
ml of 10 times diluted PBS in deionized H2O), and adjusted for osmolarity to 
preserve cell viability. 3 ml of the high density solution was then aspirated to 
lower the level of the “density cushion” and allow penetration of the sucrose 
solution into the PU sponge. A voltage gradient of 5-7 V/cm was applied to 
equilibrate the system for 20 min. prior to the addition of RBC. 
An aliquot of the RBC suspension (approx. 25 μl and 2x105 RBC) was carefully 
layered with a finely drawn Pasteur pipette onto the density cushion of the PU 
sponge. Generally, 3 to 5 samples were applied and electrophoresed at 5-7 V/cm 
and 21 mA for 2-3 h, for which the temperature of the electrophoresis solution 
and the polyurethane sponge were 25ºC ± 1ºC. The position of the RBC bands 
was monitored using a digital camera.  
 
RBC analysis 
Each RBC species, before and after electrophoresis, was assessed using a Bürker 
haemacytometer and Coulter counter (Beckman Coulter 2TM, 2 Particle 
counter/size, Florida, USA). Morphological properties were determined from 
digital records made with an Olympus CCD camera and analyzed with 
Cytop.exe and/or MS Excel programs.  
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RESULTS 
 
To determine the optimal electrophoretic conditions for cell separations, it was 
necessary to overcome the problems of cell sedimentation, loss of viability and 
heat generation during the electrophoresis. 
 
Sedimentation 
Sedimentation studies of human RBC cells were done in five solutions 
representing different physical properties, as described in Tab. 1. RBC 
sedimentation is shown over a 3 h period (Fig. 2). While hypertonic sucrose-
containing solutions did not prevent sedimentation, it was minimized in dextran-
containing solutions, especially slightly hypotonic ones. Moreover, under such 
conditions, the RBC did not aggregate, and under isopycnic conditions (where 
the densities of the solution and RBC are similar), they remained suspended as  
a relatively thin band (Fig. 2, lane 3; solution 3 from Tab. 1).  
By contrast, other solutions containing polymers such as ficoll, starch, agarose 
and polyethylene glycol of different molecular weights (data not shown) were all 
inferior to the slightly hypotonic dextran solution shown to be non-toxic for 
RBC over 3 h. The physical properties of solution 3 (Tab. 1) were shown to be 
suitable for supporting RBC, and these were retained by the addition of sucrose 
(for viability) and reduced PBS (for conductivity) to provide a “density cushion” 
(shown as electrophoresis medium I in Fig.1). 
 
Tab. 1. The physical properties of the solutions used in the cell sedimentation 
experiment. (cf. Fig. 2). 
 
  Composition Osmolarity 

[mOsm/kg] 
Density 
[g/ml] 

Viscosity 
[cP] 

Conductivity 
[mS] 

1 15 g sucrose/100 ml in 100% PBS 789 1.057 1.36 11.3 

2 9.5 g sucrose/100 ml in 100% PBS 566 1.037 1.23 12.6 

3 15 g dextran 15000-20000/100 ml 
(30% H20 and 70% PBS) 

264 1.051 2.49 9.2 

4 15 g dextran 15000-20000/100 ml 
(20% H20 and 80% PBS) 

284 1.048 2.38 10.2 

5 15 g dextran 15000-20000/100 ml 
in 100% PBS 

323 1.049 2.29 11.5 
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          15 min           60 min                  120 min                           180 min 

 
 
Fig. 2. Sedimentation of RBC for indicated period. The test tubes contained solutions  
1-5, of the composition given in Tab. 1. 
 
The separation of human and chicken RBC via horizontal, nearly isopycnic 
electrophoresis on a PU sponge 
Fig. 3A shows the distribution of human and chicken RBC, and an equal mixture 
of both before and after electrophoresis. After 3 h, the mixed sample showed two 
distinct bands. The one with greater mobility corresponded to that for the human 
RBC, while the slower one was relative to the chicken RBC band. Fig. 3B shows 
the absorbance profiles of the mixed RBC preparation before and after 3 h of 
electrophoresis, confirming the resolution of the mixed sample into two distinct 
bands. Complete separation of the two bands could be achieved by extending the 
time for electrophoresis. 

 
 

Fig. 3. The separation of human and chicken RBC in horizontal, nearly isopycnic 
electrophoresis. A - Bands of chicken, human and chicken, and human RBC at 0 h and 
after 3 h of electrophoresis are shown. The scale is shown in cm. B - Absorbance (OD) 
profiles of mixed RBC at 0 h and after 3 h of electrophoresis, taken from A. 
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RBC analysis 
Each RBC band was examined for purity using Coulter counter analysis and 
microscopy. The distribution of cell size is shown in Fig. 4, where the average 
diameter for the human RBC is shown as 5.2 µm, compared to approximately 
5.5 µm for the chicken RBC. The profile shown in Fig. 4A for the mixed RBC 
sample before electrophoresis demonstrates two peaks of cell size which 
correspond to the two RBC species. Moreover, the difference in nucleation was 
evident in the microscopic haemacytometer analysis of the different RBC 
fractions (Fig. 5). The purity of the separated RBC bands required the sampling 
of 5-10 μl directly from the middle part of each band with a finely drawn Pasteur 
pipette (Ø approx. 0.5 mm). Tab. 2 shows the haemacytometric/microscopic 
analysis of the two RBC peaks, separated as shown in Fig. 3. The faster-moving 
band contained 97.6% human RBC, while the slower-moving band was 90% 
nucleated chicken RBC, as determined via microscopic haemacytometer 
analysis. The slower-moving band also contained a small proportion of larger 
contaminating cells such as leukocytes.     
 

Fig. 4. Cell size distribution in the sample taken before RBC electrophoresis and in 
samples taken from the fast and slowly moving bands as determined using a Coulter 
counter.  
 

 
 
Fig. 5. Microphotographs showing RBC shape in a mixture of erythrocytes; the 
nucleated cells are chicken RBC. A, bar =10 μm; B, bar = 4 μm (Nomarski optics, Leica 
DMIRE2 microscope). 
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Tab. 2. Purity of the erythrocyte fractions. 
 

Results from Bürker haematocytometer   

Human RBC number (%) Chicken RBC number (%) 

Faster band 244 (97.6) 6 (2.4) 

Slower band 25 (10) 225 (90) 

 
Dye electrophoresis 
To demonstrate the electrophoresis system stability for the RBC separation 
described here, similar experiments were performed with the same system and 
solutions using dyes with different charges. The negatively charged dyes trypan 
blue, lissamine green and calcein all moved towards the anode (+ve), while the 
positively charged dyes azur II, neutral red and rhodamine S moved towards the 
cathode (-ve) (Fig. 6, Tab. 3). The dyes (all less than 1 kDa) became separated in 
less than 30 min under conditions of 8 V/cm. The negatively charged dyes 
showed different electrophoretic mobilities (TB > calcein > LG) as determined 
by their different charges. Some of the positively charged dyes had an affinity 
with, and stained, the PU matrice, and at least part of those dyes remained 
stationary. However, this did not prevent the separation of a mixed solution of 
calcein (-ve) and rhodamine S (+ve) as shown in Fig. 6 and Tab. 3. The results 
obtained show that the described horizontal electrophoresis system designed for 
the separation of cells is also suitable for the separation of much smaller 
molecules, especially those with a net negative charge. 
 
 

 
Fig. 6. The separation of dyes and flourescent dyes. A and B – in order from the top: 
azur II, trypan blue, neutral red and lissamine green. C and D – in order from the top: 
calcein, rhodamine S, and calcein + rhodamine S. 
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Tab. 3. The concentration of the fluorescent dye solutions and band positions after 10 
min. electrophoresis at 8 V/cm. 
 

   Concentration T1 - 10 min of separation at 8 
V/cm 

Trypan blue 2 mg/ml shifts 14 mm to anode 

Lissamine green 20 μg/ml shifts 10 mm to anode 

Calcein 0.2 mg/ml shifts 11 mm to anode 

0.2 mg/ml shifts 10 mm to anode Calcein + 
rhodamine S 0.2 mg/ml shifts 4 mm to cathode 

Azur II 0.25 mg/ml shifts 10 mm to cathode 

Neutral red 1 mg/ml shifts 10 mm to cathode 

Rhodamine S 0.2 mg/ml shifts 6 mm to cathode 

 
DISCUSSION 
 
RBC isolated from various species have often been used as standards to examine 
cell electrophoretic separations [11, 24, 40-42, 46, 47], since their preparation 
does not require enzyme treatment and their cell surface properties are well 
characterized with the microscopic methods of cell electrophoresis. Human RBC 
have a two-fold higher electrophoretic mobility than rabbit RBC [26, 46, 48, 49]. 
As they are easily visually separable (chicken RBC are nucleated and thus easily 
identified by microscopy), this study used human and chicken RBC, which have 
approximately a 30% difference in their electrophoretic mobility. 
The main obstacles to the development of a simple electrophoretic system for 
cell separations include: cell sedimentation/gravity; heat production and thermal 
convection; and factors which contribute to droplet sedimentation, pH instability 
and changes in electric conductivity. Such factors are associated with the good 
resolution of electrophoretically separated cells in free-flow apparatus under 
microgravity conditions [4, 29, 50, 51]. 
To overcome the problem of cell sedimentation, it was necessary to 
experimentally check the sedimentation of RBC in a variety of density gradients 
using various solutes. Cell sedimentation depends on buoyant density, which is 
related to the difference between the particle and medium density. Wallach and 
Lin (1973) [34] showed previously that biological particles (i.e. cells and 
organelles) can be compared to vesicles showing osmotic properties. Thus, cell 
density has a relative value and changes will depend upon the type of solute and 
its permeation across a particle membrane [27, 28]. Since it is easier to prevent 
cell sedimentation in slightly hypotonic rather than isotonic and/or hypertonic 
solutions, it was necessary to increase the medium density (ρm) and 
simultaneously decrease the cell (particle) density (i.e. ρp), according to the 
equation: 
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where: S – sedimentation constant, r – cell radius, ρp – cell (particle) density, ρm 
– solution density, η – solution viscosity [52].  
We chose RBC to examine our horizontal electrophoretic system for cell 
separation as RBC are cells which show relatively fast sedimentation in various 
methods based on cell separation in density gradients [52]. 
This simplified equation does not take into account the interaction of the cell 
surface with the molecules used to modify the solution density. Such events are 
very complex and cell surface specific [43, 49, 53], but our RBC sedimentation 
studies identified dextran 15000-20000 MW as the most suitable to form a 
“density cushion” for the RBC. These lower MW dextrans are osmotically 
active, whereas higher MW dextrans cause cell aggregation and RBC rouleaux 
formation, and coat the cell surfaces [37, 39, 44]. Other macromolecular 
solutions tested included ficolls or PEGs of MW ranging from 1000 to 400000, 
but these also coated the cell surface and modified cell permeability and 
electrophoretic mobility, as judged by haemoglobin leakage which compromised 
and even reversed the direction of cell electrophoresis [23, 43, 54-56].  
Separation matrices for cell electrophoresis have to be optically transparent, 
hydrophilic, highly porous to allow free cell movement, and preferably 
electrically neutral to avoid or at least reduce electroosmosis. In addition, they 
should be non-adhesive for cells. Conventional matrices used for the 
electrophoretic separation of macromolecules were reported to have pore size 
values ranging from 2-3 nm to 200 nm [3]. After checking many spongy and/or 
random network-forming materials, we found that polyurethane synthetic 
sponges with pore sizes ranging between 200-5000 μm met these requirements 
(i.e. with pores 1000 to 2000 times greater than the porous materials used for the 
separation of proteins or nucleic acids). Such spongy hydrophilic matrices were 
found suitable as anti-convective supports suitable for the separation of cells 
with a diameter 5 to 20 μm. Polyurethane is reported to be non-adhesive for 
RBC and lymphocytes, but adhesive for macrophages [57], an observation 
confirmed in our experiments.  
Ag/AgCl electrodes were used in preference to platinum since the latter caused 
changes in pH when DC current was applied. The addition of phenol red to the 
electrode solutions not only confirmed pH stability during electrophoresis but 
also provided assurance that the diffusion of the electrode solutions did not 
transgress the agar bridges. Moreover, although glucose or glycine were used for 
previous cell electrophoresis separation [20, 32], they were found to be inferior 
to sucrose for the best adjustment of media osmolarity and retention of RBC 
viability. 

9η
)ρ(ρ2r

S mp
2 −

=
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To avoid the rise of temperature during electrophoresis, we reduced the 
conductivity of the separation solutions and the voltage/current employed to 
effectively separate viable RBC, as judged by microscopy, lack of haemoglobin 
release and trypan blue exclusion. Future studies using cooling blocks (water-
perfused) or even cold-room operations should facilitate the separation of cells at 
a higher ionic strength than used in the described experiments. One of the 
advantages in using RBC in our horizontal electrophoretic system was the 
knowledge that the passive electrical parameters of the cell surface show little 
change despite any changes in cell shape, a conclusion based on radiowave 
dielectric spectroscopy [58].  
In conclusion, we report here on a simple electrophoretic system which permits 
the separation of cells which differ in their electrophoretic mobilities and surface 
charge. Horizontal separations in near-isopycnic conditions appear to be more 
important than other considerations such as thermal convection and system 
instability. The main advantage of the described method is the facility to perform 
simultaneous electrophoresis of a few samples in parallel. This makes it easy to 
compare electrophoretic mobilities and/or separate experimental and control 
samples in one experiment. It appears that this horizontal electrophoretic 
separation of cells has many advantages over established vertical systems and 
may provide new opportunities for the electrophoresis of various cell types, not 
least by applying modifications already developed for the separation and study 
of smaller particles and macromolecules.   
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