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Abstract 

Background: Arginine auxotrophy has been reported in a subset of cancers 
with inherently defective de novo arginine synthesis. However, the use of arginine 
deprivation therapy seems to be unequally effective, partially owing to the resistance 
acquired by cancer cells. Study of underlying factors involved in this response thus 
becomes of utmost importance. Meanwhile, the function of etoposide‑induced 2.4 
homolog (EI24) in cancer metabolism, and specifically in arginine metabolism, remains 
unknown.

Methods: EI24 was overexpressed in cancer cells using a doxycycline‑inducible 
system or adenovirus transduction, while siRNA was used to knockdown EI24. 
Amino acid(s) deprivation medium was exploited with a cell viability assay to check 
the reliance of cancer cell survival on arginine. Protein expression and activation were 
examined through western blot and co‑immunoprecipitation blot. Furthermore, global 
and specific protein translation were assessed through the SUnSET assay and polysome 
fractionation analysis. Gene expression and arginine level were downloaded 
from public cancer datasets for in silico validation including gene set enrichment 
and survival analysis to objectively evaluate the association between EI24 and arginine 
metabolism.

Results: EI24 promoted cancer survival under arginine starvation. Mechanistically, EI24 
replenished translation of argininosuccinate synthase 1 (ASS1) by inducing the inactive 
S‑nitrosylated form of phosphatase and tensin homolog (PTEN), leading to release 
of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) axis. This tumor‑promoting 
action of EI24 could be found in multiple ASS1‑deficient cancer cells regardless of p53 
status. Furthermore, expression of EI24 was linked to enrichment of arginine metabolism 
pathway as well as poor survival of patients with cancer across various cancer types, 
suggesting its role in cancer resistance to arginine deprivation.

Conclusions: This study is the first to report the role of EI24 in promoting cancer 
survival via translational regulation of the metabolic enzyme ASS1, thus paving a route 
for further investigation into the link between EI24 and cancer metabolism.
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Background
Cancer cells have been widely recognized for their inherent rewiring mechanism to 
utilize nutrients by robust and complex pathways [1, 2], which permits cancer growth 
and dissemination under constrained metabolic conditions in the microenvironment 
[3]. While the phenomenal observation of Otto Warburg and colleagues that tumor 
cells abnormally increased glucose uptake toward lactate production [4] placed glucose 
in the spotlight regarding cancer metabolism, numerous studies have also revealed 
remarkable changes in the metabolism of lipids and amino acid(s) [5, 6] and recently of 
semi-essential arginine [7, 8]. The early notions that arginine promoted tumorigenesis 
in patients [9] and that arginine preferably moved from blood to cancerous tissues [10] 
but not normal counterparts [11] have long implied the immense potential of this amino 
acid in tumor pathology. In parallel with its well-known function in the urea cycle, as 
one of the intermediates carrying ammonia to form urea [12], arginine has also been 
reported to serve as a precursor for polyamine and nitric oxide, both being permissive 
for cancer invasion [13–15]. Thus, starving cells of arginine has been considered to be an 
appealing regime that is currently under clinical investigation for various types of cancer 
[16–19], including a successful phase 3 trial in mesothelioma [20]. Strikingly, tumors 
have been reported to acquire resistance to such treatment, although the underlying 
molecular mechanisms remained largely unclear [21].
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Cancer cells become reliant on arginine when their excessive demand coincides 
with the impairment of intrinsic arginine production controlled by the rate-limiting 
enzyme argininosuccinate synthase 1 (ASS1) [13]. As its name suggested, intact ASS1 
incorporates aspartate to citrulline to form argininosuccinate, the immediate precursor 
of arginine. This process supposedly nourishes cells with de novo synthesized arginine 
[12]. Of note, tumor cells evolved to favor the shunting of aspartate to nucleotide instead 
of arginine synthesis [22] following silencing of ASS1 [23–25]. Paradoxically, upon 
arginine deprivation, resurgence of ASS1 has been reported and considered a direct 
mechanism of acquired resistance of cancer to therapy [26]. While transcription of 
ASS1 has been well established as occurring through several factors such as p53 [27, 
28], c-MYC [29–31], or hypoxia-inducible factor 1-alpha (Hif1α) [32], evidence on 
translational regulation of ASS1 is alarmingly missing.

Herein, we report the enhanced regulation of ASS1 protein translation in cancer 
cells upon arginine starvation, interestingly via a novel function of etoposide-induced 
protein 2.4 homolog (EI24). Identified as a target of p53 [33], EI24 was initially known 
for its involvement in apoptosis [34] and autophagy [35]. More recently, this protein 
was reported to tightly modulate the contact sites of endoplasmic reticulum (ER) and 
mitochondria, thus contributing to calcium homeostasis and cell adaptation to ER 
stress [36–38]. Of note, while EI24 has been controversially studied for being a tumor 
suppressor [39, 40] or promoter [41, 42], its function in metabolic reprogramming is 
not known elsewhere. Hence, by showing that EI24 may significantly benefit cancer cell 
adaptation to restricted arginine levels, this study hopes to shed the first light on the role 
of EI24 in the context of cancer metabolism.

Materials and methods
Cell lines and reagents

Breast cancer cells ZR-75-1 were from Professor Jaewhan Song (Yonsei University). 
MCF7, MDA-MB-231, BT-549, Hs 578T, and lung cancer cells A549, H1299, and H1975 
were kindly provided by Professor John Minna (University of Texas Southwestern 
Medical Center). Renal cell carcinoma cells ACHN, Caki-1, and Caki-2 were 
obtained from the Korean Cell Line Bank (KCLB number 21611, 30046, and 30047). 
MDA-MB-231 cells with doxycycline-inducible EI24 were generated by cloning human 
EI24 cDNA to form the pCW57-RFP-P2A-EI24-EGFP vector followed by lentivirus-
mediated induction of a stable cell line. All the cells were cultured at 37 °C with 5% 
 CO2 in Roswell Park Memorial Institute (RPMI) medium with 10% fetal bovine serum 
(FBS) for H1975 and in Dulbecco’s modified Eagle’s medium (DMEM) with 5% FBS 
for other cell lines. Lysine (L8662), spermidine (S2501), cycloheximide (CHX, C7698), 
MG-132 (M7449), and cobalt(II) chloride (C8661) were purchased from Sigma. 
Difluoromethylornithine (DFMO, 16889) and DETA NONOate (82120) were from 
Cayman. N-nitro-l-arginine methylester (L-NAME, sc-200333) and deferoxamine (sc-
203331) were from Santa Cruz. Bafilomycin A1 (Baf, ab120497) was from Abcam.

Adenovirus, plasmids, and transfection

TOPO™ cloning was performed to produce EI24-expressing pENTR™/SD/D-TOPO™ 
vector prior to LR reaction to insert EI24-expressing sequence into pAd/CMV/V5. pAd/
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CMV/V5-EI24 was then digested by PacI and transfected to HEK293-A to produce EI24-
expressing adenovirus. Constructs of hotspot mutation of p53 were generated using the 
site-directed mutagenesis method described previously [43] with the template construct 
pcDNA-flag-p53, a gift from Professor John Minna (University of Texas Southwestern 
Medical Center), using EzPCR™ HF 5× Master Mix (Elpis). X-tremeGENE ™ HP DNA 
transfection reagent (Roche) was mixed with plasmids, followed by transfection to the 
cells in culture media without FBS and antibiotics.

Knockdown of EI24 using siRNA

Cells were plated 1 day prior to reverse transfection with 30 nM of either control 
siRNA or EI24 siRNA (Bioneer) in culture media lacking FBS and antibiotics. siRNA 
was delivered to the cells using X-tremeGENE™ siRNA transfection reagent (Roche). 
After 6 h, the medium was replaced with complete media, and the cells were used for 
treatment 48 h post-transfection.

Amino acid deprivation medium preparation

Amino acid-free DMEM or RPMI powder (D9800-27 and R9010-01, USBiological) was 
reconstituted and supplemented with glucose and sodium bicarbonate according to 
the manufacturer’s instructions. Each individual amino acid (Sigma) was prepared as a 
100× stock solution in water and then added to reach the desired final concentration of 
DMEM or RPMI. Deprived amino acid was omitted from the media.

Quantitative polymerase chain reaction (qPCR)

TRIzol reagent was used to extract RNA from the cells after treatment. RNA was then 
used as template for cDNA synthesis using ReverTra Ace™ qPCR RT Master Mix with 
gDNA Remover (Toyobo). qPCR was conducted on a QuantStudio 6 Flex system with 
TOPreal™ SYBR Green qPCR High-ROX PreMIX (Enzynomics) added to triplicates of 
reaction. Fold change of gene expression was calculated by the ΔΔCt method with 18S 
serving as internal control.

Sequences of specific primers for each gene were as follows:
18S: forward 5′-ACC GCA GCT AGG AAT GGA - 3′; reverse 5′-GCC TCA GTT CCG 

AAA ACC - 3′.
EI24: forward 5′-AAT GCA CCA GCG GTT GTC TAA- 3′; reverse 5′-GAT AGA GAA 

AAG GCA GCC ACTGA- 3′.
ARG2: forward 5′-ATA GGA GCC CCG TTC TCA CA- 3′; reverse 5′-CTT CTC TTA 

TGG CAG CGG GA- 3′.
ASL: forward 5′-GAC CAT CAG CCC CCT GTT C- 3′; reverse 5′-GGC ACC ATA CTG 

CTC CAC ACT- 3′.
ASS1: forward 5′-GGA ACG ATC AGG TCC GGT TT- 3′; reverse 5′-CGT GTT GCT 

TTG CGT ACT CC- 3′.
CPS1: forward 5′-TGG CAG CAT TGA CCT AGT GA- 3′; reverse 5′-TGC ACA GCT 

TCA GCA AAA AG- 3′.
ODC1: forward 5′-ATG CCC GCT GTG TTT TTG AC- 3′; reverse 5′-TAC GCC GGT 

GAT CTC TTC AA- 3′.
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OTC: forward 5′-AGC GCA TGG AGG CAA TGT AT- 3′; reverse 5′-GGC AGC AAC 
TTT AGC AGT CTTC- 3′.
OAT: forward 5′-GGA TGC TTG GAA GGT GTG TC- 3′; reverse 5′-TGG ACT CTC 

GAA GCT CAT CC- 3′.
ACTB: forward 5′-GGC ATC CTC ACC CTG AAG TA- 3′; reverse 5′-GGG GTG TTG 

AAG GTC TCA AA- 3′.
VEGFA: forward 5′-CTT GCC TTG CTG CTC TAC CT- 3′, reverse 5′-TCC ATG AAC 

TTC ACC ACT TCGT- 3′.

Western blot

Cells were lysed in RIPA lysis buffer (150 mM NaCl, 1% Triton X- 100, 0.5% sodium 
deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 50 mM Tris pH 8) supplementing 
with protease inhibitors (Sigma) and the phosSTOP (Roche) phosphatase inhibitor 
cocktail. Protein concentrations were determined using the Pierce™ bicinchoninic acid 
(BCA) protein assay kit (Thermo) before proceeding to western blot. The nitrocellulose 
membranes with proteins transferred from SDS gels were blocked in 5% skim milk 
before primary and secondary antibodies incubation. After that, membrane was exposed 
to enhanced chemiluminescence (ECL) solution (Cytiva Lifescience™), and the signals 
were detected on ChemiDoc Imaging Systems (Bio-Rad). Primary antibodies were 
purchased from Cell Signaling Technology for EI24 (#42328), ASS1 (#70720), ARG2 
(#55003), eNOS (#32027), pAKT (Ser473) (#9271), AKT (#9272), MDM2 (#86934), 
pP70S6K (#9204), P70S6K (#9202), pS6 (#2211), LC3 (#4108), and p21 (#2947); from 
Santa Cruz for ODC1 (sc-390366), ASL (sc-374353), and β-actin (sc-69879); from Novus 
for HIF1α (NB100-449); and from Sigma-Aldrich for puromycin (MABE343). Secondary 
antibodies horseradish peroxidase (HRP)-conjugated anti-mouse immunoglobulin G 
(IgG) (A16066) and anti-rabbit IgG (G212234) were from Invitrogen.

Co‑immunoprecipitation (co‑IP)

Cells was lysed in Pierce™ IP lysis buffer (Thermo Scientific™) containing protease 
inhibitors (Sigma) and the phosSTOP (Roche) phosphatase inhibitor cocktail. Equal 
amounts of protein in each 500 μL of cell lysis were incubated overnight with 2  μL 
of puromycin or IgG antibody then 80 μL of Pierce™ protein A/G agarose (Thermo 
Scientific™) for 2 h at 4 °C. Beads were washed five times by rotation and centrifugation 
with lysis buffer. Then, 2× SDS loading buffer was used to elute the protein for western 
blot.

Cell viability assay

Treated cells were stained with Crystal Violet solution containing Crystal Violet 
(C6158, Sigma) and paraformaldehyde in phosphate-buffered saline (PBS). Cell images 
were captured before dissolving Crystal Violet stains in methanol. The colorimetric 
absorbance was then measured at a wavelength of 570 nm.

Scratch assay

MDA-MB-231 cells were seeded and grown to confluence in 12-well cell culture plates. 
Scratching of the monolayer of cells was done by using sterilized plastic tips before 
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treatment. Cell images were captured immediately after the scratching and after 24 h 
and 48 h under a microscope (Evos). Invasive distance was measured by using ImageJ 
software [44].

ASS1 activity assay

The ASS1 activity assay was carried out as previously described [28]. Cells were washed 
with PBS and then lysed in buffer A (50 mM Tris-HCl (pH 8), 10% glycerol, protease 
inhibitor cocktail). The reaction was started upon addition of reaction buffer (20 mM 
Tris-HCl (pH 7.8), 2 mM adenosine 5′-triphosphate, 2 mM citrulline, 2 mM aspartate, 
6  mM  MgCl2, 20 mM KCl, and 0.1 U pyrophosphatase) to the protein solution. The 
phosphate concentration in the product, indicative of ASS1 activity, was measured using 
molybdate buffer (10 mM ascorbic acid, 2.5 mM ammonium molybdate, and 2% sulfuric 
acid), which forms colorimetric signals read at 660 nm wavelength.

Nitric oxide (NO) production assay

NO production represented by nitrite amount was measured using the nitric oxide 
synthase (NOS) activity assay kit (Colorimetric) (K205-100, Biovision) according to 
the manufacturer’s instructions. Briefly, cell lysate was incubated for reaction at 37 °C 
for 1  h. After incubation, an equal amount of assay buffer was added to each well to 
release nitrite, indicative of NO production, and then measured using Griess reagents, 
which produce a color detectable at a wavelength of 540 nm. Each experiment included 
a standard curve generated with nitrite standards.

Polysome fractionation analysis

Polysome fractionation was performed by following the protocol outlined in a previous 
publication [45]. In brief, cells were lysed in polysome extraction buffer (10 mM Tris-
HCl (pH 7.5), 100 mM KCl, 5  mM  MgCl2, and 0.5% Nonidet P-40). Cell lysates with 
equal protein concentration were loaded onto columns of 10–50% sucrose gradient. 
Polysomes were separated by ultracentrifugation for 90 min at 39,000 RPM using a 
P40ST swinging bucket rotor. mRNA from the manually collected polysome fractions 
was extracted using TRIzol reagent and then transcripted into cDNA with ReverTra 
Ace™ qPCR RT Master Mix with gDNA Remover (Toyobo) for qPCR. The percentage of 
mRNA expression in each fraction was determined using the ΔCt method, with fraction 
1 as the control. β-Actin (ACTB) percentage was included as a control.

Surface sensing of translation (SUnSET) assay

The SUnSET assay is a widely established, nonradioactive method to assess protein 
synthesis rate [46]. Briefly, after treatment, cells were incubated in culture media 
containing 10 µM puromycin for 10 min then in fresh media for the next 50 min. Cells 
were then harvested in RIPA lysis buffer or Pierce™ IP lysis buffer (Thermo Scientific™) 
both containing protease and phosphatase inhibitors for either western blot or Co-IP 
experiments, respectively.
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In silico analysis

Gene set enrichment analysis (GSEA) was conducted to correlate the gene expression 
of EI24 and the enrichment of the arginine metabolism pathway in the breast cancer 
samples of datasets obtained from the Gene Expression Omnibus (https:// www. ncbi. 
nlm. nih. gov/ geo/, GEO accession nos. GSE50948 and GSE5364). Samples were stratified 
into three groups of low, medium, and high expression of EI24 on the basis of the first 
and third quartiles of expression before GSEA. Comparison of low and high phenotypes 
was performed by using GSEA software (http:// www. broad. mit. edu/ gsea/) [47, 48]. 
GSEA was also conducted on the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt, 
https:// www. webge stalt. org/) [49] to reveal the differential pathways in EI24 knockdown 
(GSE52508) or EI24 overexpression (GSE154422).

Gene expression of EI24 and ASS1 was obtained from OncoDB [50, 51] (http:// 
oncodb. org/ index. html) and graphed to compare between normal and breast cancer 
tissues.

The prognostic significance of EI24 and ASS1 was assessed by generating Kaplan-
Meier plots using the Gene Expression database of Normal and Tumor tissues (GENT2) 
[52] (http:// gent2. appex. kr/ gent2/) or Gene Expression Profiling Interactive Analysis 
(GEPIA) [53] (http:// gepia. cancer- pku. cn/) web servers. The median gene expression 
was used upon to classify patients into groups with high or low expression of that gene.

Levels of metabolites including arginine in breast cancer samples of the Tang et  al. 
dataset were downloaded from the Cancer Atlas of Metabolic Profiles (CAMP, https:// 
doi. org/https:// doi. org/ 10. 5281/ zenodo. 71502 52) [54] and matched with two groups of 
patients with low or high expression of EI24 as classified by the first and third quartiles 
of expression [55]. Outliers of arginine level were determined by using the interquartile 
range method.

Statistical analysis

Student’s t-test was used to statistically compare means of two groups, while one-way 
analysis of variance (ANOVA) was used to test the difference among three or more 
groups. All graphs and statistical analysis were carried out by using GraphPad Prism 
version 10.0. Data are presented as mean ± SD (n ≥ 3, except where indicated), with 
p-values less than 0.05 considered significant. Asterisks indicate p-values as follows: * 
p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001.

Results
EI24 increased ASS1 upon arginine deprivation in ASS1‑deficient breast cancer cells

To validate the importance of arginine in cancer growth, we exposed breast cancer 
cells of different subtypes including ZR-75-1 (luminal B), MCF7 (luminal A), and 
MDA-MB-231 (basal-like) [56] to culture media lacking one or several amino acid(s) 
and observed the diverse response to each condition. Notably, among these amino acids, 
arginine stood out as the most important for the survival of the most aggressive cells 
MDA-MB-231 [57] (Supplementary Fig. S1A). Consistently, blots of arginine metabolism 
proteins (Fig. 1A, B) showed that MDA-MB-231 and Hs 578T, were naturally deficient 
of arginine synthesis enzyme ASS1 yet increased arginine utilizing enzymes arginase 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broad.mit.edu/gsea/
https://www.webgestalt.org/
http://oncodb.org/index.html
http://oncodb.org/index.html
http://gent2.appex.kr/gent2/
http://gepia.cancer-pku.cn/
https://doi.org/
https://doi.org/
https://doi.org/10.5281/zenodo.7150252
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Fig. 1 EI24 increased ASS1 upon arginine deprivation in ASS1‑deficient breast cancer cells. A Urea 
cycle‑related enzymes (CPS1, carbamoyl phosphate synthetase 1). B Expression of arginine metabolism 
enzymes in a subset of breast cancer cell lines. C Viability of breast cancer cells upon arginine deprivation 
with EI24 overexpression (OE) by doxycycline (MDA‑MB‑231) or adenovirus (Hs 578T). D Expression of ASS1 
upon arginine deprivation (left) or lysine supplementation for 24 h (right) in MDA‑MB‑231 with EI24 OE 
by doxycycline. E Enzymatic activity of ASS1 upon time‑dependent deprivation of arginine with EI24 OE 
by doxycycline in MDA‑MB‑231. F Expression of ASS1 upon arginine deprivation in 24 h in Hs 578T cells 
with EI24 OE by adenovirus (left) and knockdown by siRNA (right). G Arginine level in human breast cancer 
samples classified by EI24 gene expression. H Correlation of EI24 expression and Kegg_arginine_and_
proline_metabolism pathway determined by GSEA in two different breast cancer datasets
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2 (ARG2), ornithine decarboxylase 1 (ODC1), and nitric oxide synthase (eNOS), 
indicating their higher demand while lacking de novo arginine synthesis capacity, hence 
being dependent on exogenous arginine (Fig. 1B). Next, to investigate whether EI24 is 
important for cancer cells during arginine deprivation, we overexpressed EI24 using 
doxycycline in MDA-MB-231 and adenovirus in Hs 578T. The results showed that 
overexpression (OE) of EI24 increased cancer cell viability in such conditions (Fig. 1C). 
Mechanistically, transient resurgence of ASS1 in ASS1-deficient cells as a response to 
arginine deprivation was prolonged by EI24 (Fig. 1D, left). Meanwhile, other important 
enzymes of arginine metabolism such as argininosuccinate lyase (ASL) and ARG2 
remained unaffected by the presence of EI24 (Supplementary Fig. S1B). Such response of 
ASS1 was not seen in ASS1-efficient cells (Supplementary Fig. S1C). EI24 also induced 
ASS1 when we inhibited arginine transport by treating the cells with supraconcentration 
of arginine-competing amino acid lysine [58] (Fig.  1D, right). In parallel with protein 
expression, ASS1 enzymatic activity measured by phosphate released was also stabilized 
by EI24 (Fig. 1E). Harboring higher EI24 expression compared with MDA-MB-231, Hs 
578T cells (Fig. 1B) survived longer after arginine deprivation (Fig. 1C) and similarly had 
ASS1 increased by EI24 overexpression and suppressed by silencing of EI24 using siRNA 
(Fig. 1F). Objectively, analysis of public breast cancer datasets revealed a considerably 
higher arginine level in cancer tissues harboring high expression of EI24 (Fig. 1G), and 
EI24 linked to the enrichment of arginine_and_proline_metabolism (Fig. 1H), while gene 
expression data from OncoDB suggested an overall reduction of both ASS1 and EI24 
in tumor compared with normal (Supplementary Fig. S1D). Taken together, in ASS1-
deficient cancer, EI24 elevated ASS1 expression and activity thus sustained cell viability 
upon arginine depletion condition.

EI24 regulates protein synthesis of ASS1

We next sought to determine the mechanism by which EI24 modulates ASS1 expression. 
First, by qPCR analysis, we found that the mRNA level of ASS1 was elevated upon 
arginine deprivation, in both ASS1-deficient (Supplementary Fig. S2A), and ASS1-
efficient (Supplementary Fig. S2B) cells, regardless of EI24 (Supplementary Fig. S2A). 
These data imply that EI24 enhanced ASS1 expression through post-transcriptional 
processes such as protein translation or degradation. Next, ASS1 emerged upon arginine 
deprivation was attenuated solely by protein translation inhibitor cycloheximide 
(CHX), but not proteasome inhibitor MG- 132, or autophagy inhibitor bafilomycin A 
(Baf ) [27] (Fig.  2A), suggesting that ASS1 protein was mainly regulated by protein 
translation rather than degradation via proteosome or autophagy. To investigate direct 
involvement of EI24 in ASS1 translation, we performed SUnSET assay followed by 
western blot [46], which revealed a substantial gain of global protein synthesis upon 
EI24 overexpression (Fig.  2B). Note that arginine deletion quickly caused impairment 
of global protein synthesis (Supplementary Fig. S2C), which was not visually rescued 
by EI24 (Fig.  2B). However, co-IP analysis following SUnSET assay showed that EI24 
maintained the incorporation of phosphorylation of ribosomal S6 protein to ribosome 
(Fig.  2C), which supposedly facilitates synthesis of critical proteins in such condition. 
Consistently, ribosome was among the most significantly downregulated or enriched 
pathways in EI24 silenced or overexpressed models, respectively (Supplementary Fig. 
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Fig. 2 EI24 regulates protein synthesis of ASS1. A Expression of ASS1 upon arginine deprivation and/or 
cycloheximide (CHX, 10 µg/ml, 24 h), MG132 (10 µM, 6 h), and bafilomycin A1 (Baf, 10 nM, 2 h) treatment in 
MDA‑MB‑231 cells; murine double minute 2 (MDM2), hypoxia‑inducible factor 1 subunit alpha (Hif1α), and 
microtubule‑associated protein 1 A/1B‑light chain 3 (LC3) were included as markers for treatment effects. 
B Global protein synthesis level with EI24 OE by adenovirus in MDA‑MB‑231 cells. C Integration of pS6 to 
ribosome upon EI24 OE by adenovirus in MDA‑MB‑231 cells examined by Co‑IP. D ASS1 mRNA distribution 
analyzed by qPCR following polysome fractionation in MDA‑MB‑231 with EI24 OE by doxycycline (upper) and 
Hs 578T with EI24 OE by adenovirus (lower). E Phosphorylation of AKT upon time‑dependent deprivation 
of arginine in MDA‑MB‑231 with EI24 OE by doxycycline. F Phosphorylation of AKT upon time‑dependent 
deprivation of arginine in Hs 578T with knockdown of EI24 by siRNA. G ASS1 expression and phosphorylation 
of AKT upon arginine deprivation and/or PI3K inhibitors LY294002 (LY, 10 µM) and wortmannin (Wort, 50 µM) 
in 24 h in MDA‑MB‑231 with EI24 OE by doxycycline
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S2D, E). Next, polysome fractionation analysis showed that EI24 specifically increased 
translation of ASS1 (Fig. 2D) as indicated by the distribution of ASS1 mRNA to larger 
polysomes, but not of other arginine metabolism enzymes (Supplementary Fig. S2F). 
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of 
rapamycin (MTOR) axis is the mediator of protein translation [59], which was known 
to be transiently reactivated upon prolonged arginine deprivation [60]. Inhibition of 
MTOR indeed abolished arginine starvation-induced ASS1 (Supplementary Fig. S2G). 
Interestingly, that transient activation of AKT after depletion of arginine was stabilized 
by overexpression (Fig.  2E, Supplementary Fig. S2H) and suppressed by knockdown 
of EI24 (Fig. 2F). Inhibition of PI3K/AKT by wortmanin and LY29004 repressed ASS1 
(Fig. 2G), further depicting the dependence of ASS1 on this axis. Taken together, when 
arginine was not available, EI24 elevated ASS1 mRNA translation in a PI3K/AKT-
dependent fashion.

Activation of PI3K/AKT‑regulating ASS1 translation is through NO‑regulated nitrosylation 

of PTEN

PI3K recruitment of AKT to the cell membrane for its activation can be blunted by 
phosphatase sequence homology to tensin (PTEN) [59], which in turn was inhibited 
selectively by nitric oxide (NO) through S-nitrosylation [61, 62]. Since arginine is the 
source of NO production (Fig. 1A), its depletion assumedly releases PTEN, leading to 
consecutive activation of AKT. Indeed, we found that exposure to arginine deprivation 
reduced the nitrite amount representing NO production in cancer cells, which was 
notably restored by EI24 (Fig.  3A). Accordingly, we hypothesized that EI24 persisted 
pAKT through inhibition of PTEN by NO. NO supplement DETA NONOate (deta-NO), 
but not reactive oxygen species  H2O2, increased pAKT and ASS1 protein expression 
and translation (Fig.  3B, C). In contrast, inhibition of NO production by L-NG-nitro 
arginine methylester (L-NAME) blunted pAKT and ASS1 (Fig.  3D), leading to cell 
death (Fig.  3E) under arginine depletion. EI24-induced translation of ASS1 was also 
suppressed by L-NAME treatment (Fig.  3F). Meanwhile, biotin switch assay to detect 
nitrosylated proteins revealed that S-nitrosylated PTEN, which was reduced upon 
arginine deprivation, was sufficiently rescued by EI24 and dependent on NO production 
(Fig.  3G). Taken together, the regulation of EI24 on ASS1 translation likely occurs 
through releasing PI3K/AKT by nitrosylation of PTEN. This results in increased ASS1 
expression, which helps maintain arginine levels essential for NO production, thereby 
establishing a vicious cycle of cancer response under arginine deprivation (Fig. 3H).

Arginine is pivotal for polyamine synthesis in breast cancer

We next questioned the critical role of arginine that drives the rapid response of cancer 
cells to its depletion. Arginine can undergo conversion into urea, polyamine, or proline 
via the essential functions of ARG2, ODC1, or ornithine aminotransferase (OAT), 
respectively. qPCR data revealed that the mRNA expression of polyamine synthesis 
enzyme ODC1 considerably increased when arginine was omitted, while the other 
enzymes did not show similar changes (Supplementary Fig. S2A, S2B). This specified 
polyamine, a well-known factor of cancer aggression [15], as the major downstream 
and may substitute arginine for cancer demand. To elucidate this notion, spermidine, 
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a polyamine, was supplemented to cells following arginine deprivation. As expected, 
treatment with spermidine rescued cell viability (Supplementary Fig. S3A, S3B) and 
cell invasion (Supplementary Fig. S3C, S3D) upon arginine depletion, similarly to 

Fig. 3 Activation of PI3K/AKT‑regulating ASS1 translation is through nitric oxide (NO)‑regulated nitrosylation 
of PTEN. A Relative nitrite amount in MDA‑MB‑231 cell lysis upon arginine deprivation with EI24 OE by 
adenovirus. B Expression of ASS1 and pAKT upon arginine deprivation and/or  H2O2 and NO donor (deta‑NO) 
treatment in MDA‑MB‑231 with EI24 OE by adenovirus (NAC, N‑acetylcysteine). C ASS1 mRNA distribution in 
polysome fractions upon NO donor (deta‑NO) treatment in MDA‑MB‑231. D. Effect of L‑NAME on ASS1 and 
pAKT in MDA‑MB‑231 with EI24 OE by adenovirus. E Cell viability upon arginine deprivation and L‑NAME 
treatment in MDA‑MB‑231 with EI24 OE by adenovirus. F ASS1 mRNA distribution in polysome fractions 
upon L‑NAME treatment in MDA‑MB‑231 with EI24 OE by adenovirus. G S‑nitrosylation of PTEN upon arginine 
deprivation and L‑NAME treatment in MDA‑MB‑231 with EI24 OE by adenovirus. H Model of EI24‑regulated 
translation of ASS1 via nitrosylation of PTEN
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overexpression of EI24, in cells lacking EI24. Polyamine treatment restored arginine 
deprivation-induced ASS1 expression to baseline (Supplementary Fig. S3E), while 
inhibition of polyamine synthesis enzyme ODC1 by difluoromethylornithine (DFMO) 
upregulated the ASS1 mRNA level (Supplementary Fig. S3F), together suggesting that 
cancer cells regulated arginine synthesis in accordance with the availability of polyamine.

EI24 enhanced ASS1 expression in various ASS1‑deficient cancers, independent of p53 

as a transcription factor for ASS1

Both EI24 and ASS1 were targets of wildtype p53 [28, 33]. Indeed, our breast cancer 
panels showed that p53-wildtype cells have efficient ASS1, as opposite to p53-mutated 
ones (Fig.  1B) [63], suggesting p53 as the transcription factor of ASS1. However, we 
transfected various p53 plasmids to p53-null H1299 lung cancer cells and found that 
both wildtype and mutated p53 that are impaired in canonical transcription activity 
[64] did not affect ASS1 expression (Fig. 4A, Supplementary Fig. S4A). Similarly, ASS1 
expression remained resilient in p53-wildtype MCF7 regardless of arginine deprivation 
and/or mutated p53 presence (Supplementary Fig. S4B). In addition, induction of 
wildtype p53 to p53-mutated MDA-MB-231, though functionally promoted p21, did 
not increase ASS1 any further than EI24 did (Fig. 4B, Supplementary Fig. S4C). We thus 
proposed another potential transcription driver c-MYC [29–31], as it was stimulated 
upon arginine deprivation [65] (Supplementary Fig. S4C). Treatment with 10074-G5, a 
small-molecule inhibitor of c-MYC transcriptional activity, suppressed ASS1 resurgence 
transcriptionally in MDA-MB-231 (Fig.  4C, D). Meanwhile, induction of Hif1α by 
deferoxamine or  CoCl2, known to repress ASS1 transcription elsewhere [32], did not 
affect ASS1 mRNA induced under arginine deprivation (Supplementary Fig. S4D). 
Lastly, to validate our finding in other types of cancer, ASS1 expression was assessed in 
subsets of renal cell carcinoma (RCC) and lung adenocarcinoma (LUAD), among which, 
Caki-1 and A549, even harbor wildtype p53 [66, 67], appeared to be ASS1-deficient 
(Fig. 4E). Nevertheless, EI24 substantially prolonged cancer cell survival upon arginine 
deprivation by enhancing ASS1 in these cell lines (Fig. 4F, G), but not ASS1-efficient cells 
(Supplementary Fig. S4E, F). Overall, EI24 seemed to sustain ASS1 translation regardless 
of the transcription factor driving ASS1 mRNA expression. With this tumor prosurvival 
role, EI24 and ASS1 both showed poor prognostic value in patients, not only in a same 
breast cancer dataset (Fig. 4H), but also across various cancer types (Supplementary Fig. 
S4G).

Discussion
Alterations of the urea cycle toward maximizing the use of nitrogen for macromolecules 
rather than disposal lead to impairment of the arginine synthesis machinery in cancer 
[13], as illustrated by the downregulation of the rate-limiting enzyme ASS1 across 
multiple cancers [68, 69]. This ASS1 silencing conjointly benefits cancer cells in 
terms of DNA damage adaptation [70], releasing serine synthesis [71], and promoting 
chemotherapy resistance [72]. Nevertheless, it reveals an immense reliance of cancer 
cells on exogenous arginine, as the arginine level exclusively increases in patients’ plasma 
[73], creating a chance for treating cancer by starving it of arginine [20].
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Fig. 4 EI24 enhanced ASS1 expression in various ASS1‑deficient cancers, independent of p53 as a 
transcription factor for ASS1. A Expression of ASS1 in p53‑null H1299 upon transfection of wildtype or 
point‑mutated p53 plasmids; p21 and MDM2 were included as positive control for p53 transfection. B 
Expression of ASS1 upon arginine deprivation in p53‑mutated MDA‑MB‑231 with wildtype p53 plasmid 
transfection and EI24 OE by adenovirus. C mRNA expression of urea cycle‑related enzymes upon arginine 
deprivation and/or 10074‑G5 (G5) treatment in 24 h in MDA‑MB‑231. D Expression of ASS1 upon arginine 
deprivation and/or 10074‑G5 (G5) treatment in 24 h in MDA‑MB‑231. E ASS1 expression in a subset of renal 
cell carcinoma (RCC) and lung adenocarcinoma (LUAD) cells. F Cell viability upon time‑dependent arginine 
deprivation in Caki‑1 and A549 with EI24 OE by adenovirus. G Expression of ASS1 and pAKT upon arginine 
deprivation for 24 h in Caki‑1 and A549 with EI24 OE by adenovirus. H Prognostic value of EI24, and ASS1 in 
breast cancer determined by survival analysis on GENT2
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In agreement with other study showing reexpression of ASS1 in cancer tissues after 
treatment with arginine depletion enzyme ADI-PEG20 [74], on the basis of which 
cancer cells might acquire treatment resistance, we also observed the emergence of 
ASS1 in cancer cells lacking basal ASS1 upon being deprived of arginine in culture 
media. Notably, we pointed out that this appearance of ASS1 was transient, but 
could be prolonged by the presence of EI24, and parallel EI24 inhibition of PTEN via 
S-nitrosylation thus enhanced ASS1 translation regulated by PI3K/AKT. Regulation 
of the ASS1 protein level has been reported elsewhere, albeit rarely, as being 
inactivated through acetylation at K165 and K176 [75] or proteasome degradation 
[76]. The novel translational regulation of ASS1 provided in this study was dependent 
on NO production, which in turn requires availability of arginine [77], forming an 
interdependent NO-PI3K/AKT-ASS1-arginine-NO cycle. We demonstrated that EI24 
facilitated this cycle through additionally sustaining the NO level, thereby preventing 
AKT compromise and facilitating ASS1 translation on the polysome. In a recent report, 
under oxidative stress condition, EI24 was also found to protect pancreatic beta cells 
by inhibiting translation of nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase 4 (NOX4) by attaching an RNA-binding protein to the 3′-UTR of NOX4. While 
the notion that EI24 promotes or inhibits protein translation seems to be context-
dependent, both cases result in better cell adaptation to stresses. Similarly, while the 
functions of EI24 in cancer are still under debate [39–42], we suggest that EI24 helps 
cancer cells overcome exhausting conditions such as metabolic limitation, as in this 
study. Further studies should be conducted to see whether EI24 exerts this tumor-
promoting role in other stress circumstances, such as hypoxia, genome instability, etc., 
which are well established as hallmarks of cancer. Furthermore, ASS1 could increase as 
a response not only to arginine deprivation but also to chemotherapy, independently 
of p53 [72]. In our study, EI24 regulated ASS1 translation in various ASS1-deficient 
cancer cells, regardless of p53’s function as an ASS1 transcription factor. It would be 
very interesting to obtain a comprehensive view of all ASS1-activating conditions and 
the corresponding role of EI24.

Arginine deprivation was widely depicted to affect cancer cells through inducing 
mitochondrial distress [78, 79], emphasizing function of arginine in energy production. 
In addition, here we aimed to explore the metabolic fate of arginine and found that 
arginine was likely utilized as a precursor for polyamine, which was crucial for cancer 
survival and invasion [80] in malignant breast cancer cells. When arginine was scarce, 
cancer seemed to activate polyamine synthesis to compensate. In accordance with our 
report, a study by Locke et al. proposed a combination of ASS1 silencing and polyamine 
synthesis inhibition for synthetic lethality in mesothelioma [81].

While the potential of arginine deprivation therapy has been overshadowed by 
acquired resistance in cancer, our study describes a novel resistance mechanism by which 
EI24 sustains the arginine synthesis enzyme ASS1 through translational regulation and 
sheds light on the tumor-promoting function of EI24 with regard to cancer metabolism.
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