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Introduction
Despite decades of ongoing efforts in the war against cancer, current therapeutic options 
often remain insufficient [1, 2]. The unresolved challenge is the complexity and intrin-
sic polygenicity of neoplastic diseases, which cannot be addressed by targeting a single 
molecular target. A combination of different treatment modalities is usually required to 
achieve optimal outcomes that often depend on the individual patient and cancer type. 
The development of effective and sophisticated treatment strategies is currently fueled 
by rapid progress in basic biomedical research as well as the evolution of surgical, radio-
therapeutic, and immunological approaches.

Nevertheless, the safe application of antitumor drugs is limited by the off-target effects 
of most current drug strategies. Additionally, their prolonged use can result in modified 
tumor occurrences and resistance, as well as their ability to promote cancer stem cells 
[3]. Furthermore, with the acknowledgment of inter- and intra-tumoral heterogeneity 
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and the dynamic and complex interactions within the tumor microenvironment (TME) 
[4–7], the necessity of simultaneously targeting a variety of different and complex signal-
ing pathways has becomes evident. Consequently, complex combination or multimodal 
therapies are required [8]. Such approaches could enhance outcomes through their syn-
ergistic mechanisms of action by targeting the different properties of cancer cells or the 
TME. This creates a demand for alternative approaches in drug development [9, 10].

The amount of money invested in research and development (R&D) required to intro-
duce a novel FDA-approved drug is continuously and dramatically increasing, while the 
likelihood for cancer drug approval in phase I clinical trials remains the lowest of any 
drug type at 6.7% [10–12]. This limitation in R&D productivity is termed as ‘Eroom’s 
Law’ [11]. Scannell et  al. proposed four problems: (1) ‘the Beatles’ problem’. In other 
words, developing new drugs that were significantly more efficient, safer, and improved 
over existing (and usually cheaper) therapies was like finding a music group better than 
the Beatles [13]; (2) the ’cautious regulator’ problem is the increasing safety and formal 
requirements by the regulatory agencies [14–17]; (3) the ’throw money at it’ problem 
occurs when the investment strategies try to overrate a potential new drug in order to 
improve the company competitiveness [18]; (4) and finally the ’basic research–brute 
force’ bias that improvement of basic research and screening technology will always 
translate into effective drug discovery [18].

These limitations cannot be easily solved or controlled. Other challenges, however, are 
being addressed through the development of in vitro pharmacological profiling of drug 
candidates [19] and the integration of increasing basic research information into drug 
development pipeline design. This is particularly true in the human genome-wide asso-
ciation studies (GWASs) [20]. Furthermore, the careful consideration of the risk–benefit 
balance by regulatory agencies is also clearly important [21].

One strategy drug development limitations is the repurposing of already existing, 
clinically approved drugs for combinatory anticancer treatments [22–24]. This approach 
allows for the expedited development of novel therapies at a fraction of the costs and 
risks associated with novel drug discovery given that the safety profiles of these mol-
ecules have already been established. Furthermore, drug repurposing strategies are sup-
ported by progress in understanding both the mechanisms of human pathologies and 
the long-term consequences of these “old” drugs’ applications and by the continuous 
advancements in targeted drug delivery. Notably, the majority of currently marketed 
drugs have the ability to interact with more than one target, and occasionally include 
those that could benefit cancer patients [25–27].

Indeed, opportunistic findings led to the very first chemotherapeutics, chlorambucil 
(Leukeran) and busulfan (Myleran), which are still used to treat chronic lymphocytic and 
myeloid leukemias (CLL and CML) [28–30]. These drugs originated from ‘mustard gas’ 
and could be regarded as repurposed chemical weapons [31–33]. Nowadays, repurpos-
ing strategies often aim to substitute cytotoxic therapeutics with cytostatic ones, such as 
metformin and thalidomide, originally used to treat diabetes and inflammation, respec-
tively [33]. Drug repurposing is not only limited to finding new uses for drugs initially 
developed for other diseases (including generics, on-patent drugs, and failed molecules), 
but also includes the original cancer drugs reassigned for different types of cancer or in 
different combinations.
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Repurposing drugs can also be faster and less costly. For example, despite the need to 
test the new indications of repurposed drugs in later-phase clinical trials and obtain-
ing approvals, knowing their safety profiles and pharmacokinetics/pharmacodynamics 
reduces the risk of failure [34, 35]. Although, the vast majority of molecules that undergo 
clinical trials do not make it to the clinic [36], some of those that fail at late stages 
could still be good candidates for repurposing and turn financial losses into potential 
successes.

In summary, drug repurposing strategies could improve the outcomes of modern 
mono and combinatory antitumor therapies. However, transitioning repurposed drugs 
into clinical application is accompanied by numerous commercial, technological, and 
regulatory obstacles. This short narrative review summarizes and discusses both the 
advantages and challenges associated with the repurposed drug component of antitu-
mor therapeutic strategies.

Strategies for drug repurposing

Drug repurposing and is also known as drug repositioning or drug reprofiling. This 
classification can be further expanded to include failed drugs—compounds that have 
entered clinical trials but did not succeed due to unsatisfactory efficacy against the initial 
indication [37, 38]. All these compounds can be further divided into patent-protected 
(both approved and failed) and off-patent (generic) drugs. Obviously, the majority of 
research information comes from the latter group [37, 39, 40].

Although many successful drug reassignments have had rather serendipitous back-
grounds, these favorable outcomes drive the optimistic and further development of sys-
tematic, dedicated strategies [41]. The simplest classification of drug discovery, including 
repurposing aspects, is divided into two basic lines of action: target-based drug discov-
ery and phenotypic drug discovery [29]. The first approach starts by defining the molec-
ular target underlying the pathology and aims to design dedicated drugs. For example, 
tamoxifen, which was initially aimed to be a contraceptive, was repurposed for the treat-
ment of breast cancer since it was found to efficiently inhibit the estrogen receptor [42]. 
In contrast, phenotypic drug discovery ignores a specific drug target or hypothesis about 
its role in disease and instead tests candidates for desirable biological activity in ‘physi-
ologically relevant’ systems. For instance, during a phenotypic screen for cell prolifera-
tion, it was found that auranofin, originally an anti-arthritic medication, effectively and 
selectively targets gastrointestinal stromal tumors, including imatinib-resistant ones [43, 
44].

Drug repurposing strategies can also be classified into three main groups: target-
centric, drug-centric, and disease-centric approaches [23]. Each of these strategies has 
its success stories, limitations, and advantages, and consequently, a dedicated group 
of supporters. The drug-centric approach focuses on identifying new indications for 
existing drugs, which can include expanding the existing license or patent towards 
novel off-label use of the compound in new medical conditions or groups of patients. 
This strategy is often applied to investigational or failed drugs that faced Eroom’s Law-
related limitations in their initial assignment pipelines [23]. For example, valproic acid, 
originally indicated for bipolar disorder, has an off-target interaction with histone 
deacetylase 2, a protein that plays a role in many types of cancers. This has led to testing 
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the repositioning of this drug for the treatment of neoplastic conditions such as familial 
adenomatous polyposis [45].

Drug-centric repositioning can be considered the least direct approach because the 
drug is only linked to a novel indication via the discovery of a target that is already estab-
lished for this indication. Thus, a precise characterization of drug-target interactions 
is required to propose a novel repositioning hypothesis. The most common technical 
approaches for drug-centric repositioning are structure-based computational methods 
like molecular docking [46], pharmacophore modeling algorithms [47], protein–ligand 
interaction profile similarity testing [48], and machine learning approaches [49, 50]. 
However, since the drug needs to be repurposed to a novel target or disease, a structural 
model describing the binding mode of the drug to its original targets needs to be well 
defined. Furthermore, machine learning approaches are limited by the completeness of 
information in the databases that are utilized [20, 23, 51].

The target-centric approach matches a new indication without a treatment with an 
established drug and its known target. The old and new indications typically differ quite 
significantly. Complementary to a disease-centric approach, target-centric repositioning 
builds on a novel link between a new indication and an established target. It involves 
investigating the specific molecular targets implicated in the pathology of a disease 
and uses an existing drug proven to modulate those targets. For example, azacitidine, a 
potent inhibitor of DNA methyltransferases, was originally dedicated to treating myelo-
dysplastic syndrome [52] and was later adapted for treating patients with acute myeloid 
leukemia and chronic myelomonocytic leukemia [52]. This approach is particularly use-
ful when seeking to repurpose drugs to treat rare diseases.

Finally, the most effective approach so far is the disease-centric approach, which 
involves re-profiling drugs among different types of a disease, such as two types of cancer 
[23]. It involves identifying diseases with homologous underlying biological mechanisms 
and similar guiding principles to the indicated original drug treatments. For example, a 
drug developed to treat psoriasis could also treat other diseases with uncontrolled cell 
growth, such as cancer. In the case of cancer, these guiding principles are summarized in 
the Hallmarks of Cancer [53, 54]. Since these key hallmarks of malignancy are not regu-
lated by a single signaling pathway [55], the pathways responsible for a cancer phenotype 
underlie the pathomechanisms of many other non-oncological human diseases. This 
opens the possibility of repurposing drugs towards novel anticancer therapeutics and 
supports agents in combinational approaches [56]. Notably, the diversity and complex-
ity of the hallmarks of oncogenesis provide a strong rationale for using multiple drugs to 
obtain satisfactory therapy outcomes [40], while drug repositioning could significantly 
reduce costs and increase the availability of such novel therapies [56, 57].

Cancer complexity as a target of repurposed drugs

With the progress in understanding the molecular mechanisms related to oncogenesis, 
cancer progression, and treatments, more distinct attributes and signaling pathways are 
now recognized as crucial for various neoplastic diseases. Indeed, the initially proposed 
eight Hallmarks of Cancer have now been extended to fourteen [53, 54]. Although this 
diversity and complexity of neoplastic disease remain a therapeutic challenge, it also 
provides a strong rationale for drug repurposing. It is important to note that these 
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hallmarks often result from the crosstalk between different signaling pathways, some 
of which are deregulated in cancer cells, while others compensate for this [58–62]. For 
example, cancer cells often efficiently avoid unfolded protein responses, hypoxia, and/or 
oxidative stress-related cell death signals and favor the proadaptive ones [63–67].

Nevertheless, the complexity of such signaling often limits the ability to selectively tar-
get cancer-specific signals without interfering those that are therapeutically desired. For 
example, inositol-requiring enzyme 1 (IRE1) activity, which is of great interest as a target 
for glioblastoma and triple-negative breast cancer, can lead to the accumulation of proa-
daptive signals. Whereas, at the same time, this enzyme can also support cell death sign-
aling [7, 68–70]. Thus, despite the availability of both IRE1 inhibitors and potentiators, 
their translation into the clinic remains a challenge. Furthermore, healthy cells are often 
exposed to stress-inducing factors, with chemotherapeutics being one of them [71], and 
thus such stress-oriented therapies also carry the risks of adverse effects.

Chronic proliferation, a fundamental feature of cancer cells, often results from a net-
work of deregulated signaling pathways and growth factors. These pathways operate 
mainly by receiving signals from growth factors that bind to cell-surface receptors typi-
cally with intracellular tyrosine kinase activity [72]. This activity modulates pro-survival 
signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), 
the mammalian target of rapamycin (mTOR) [73] and the mitogen-activated protein 
kinases/extracellular signal-regulated kinase (MAPK/ERK) [74]. The development of 
specific receptor tyrosine kinase inhibitors has resulted in effective chemotherapeutics 
[74]. However, cancer cells can also utilize many other pathways to proliferate and even-
tually circumvent the inhibited routes in order to develop resistance [75, 76]. Repur-
posed drugs may provide a solution to this problem. For example, rapamycin, an mTOR1 
inhibitor initially approved as an immunosuppressant and later as an anti-restenosis 
agent [77, 78], was repurposed to treat leukemias due to the importance of the mTOR 
pathway in cancer [79, 80] [81]. However, inhibition of mTOR1 is often compensated by 
the activation of PI3K-AKT [82] and the reactivation of eukaryotic translation initiation 
factor 4E-binding proteins [83, 84]. Despite these limitations, rapamycin and its more 
soluble and specific analogs, like temsirolimus [85], have been tested in combination 
with growth factor receptor antagonists [86].

Other candidates for repurposing that could target cancer proliferation include 
prazosin, an alpha blocker initially approved to treat hypertension [87], and 
indomethacin, a non-steroidal anti-inflammatory drug (NSAID) [88]. Prazosin has 
been reported to inhibit AKT signaling [89, 90] and is recommended for treating 
pheochromocytoma [91]. It is also included in a Phase 1 study as an additive to 
radiotherapy in men with prostate cancer (ACTRN12621000784819). Indomethacin, 
besides its Cox1/2 inhibition-related antiangiogenic effects [92], has been shown 
to impair cancer proliferation by inhibiting MAPK [93] or PKC signaling [94]. 
Currently, three indomethacin-related clinical trials are registered, including a Phase 
4 trial for prostate cancer (ChiCTR2000038968) and a Phase 1 study for breast cancer 
(NCT02950259). Furthermore, drugs that could effectively target human telomerase 
reverse transcriptase (hTERT) in cancer cells to limit their replication remain an interest 
for drug repurposing strategies [95].
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Another promising strategy is the search for drugs that can accelerate cancer cell 
death. Along with progress in understanding the molecular mechanisms underlying 
regulated cell death [96, 97], many related adverse effects of non-oncological drugs may 
be useful in cancer therapies. Considering that cancer cells often circumvent common 
apoptotic pathways, drugs that can selectively accelerate other cell death modalities—
including ferroptosis [98], cuproptosis [99], necroptosis [100], pyroptosis[101], and lethal 
autophagy [102]—can improve treatment strategies while reducing general toxicity. One 
exception, however, is autophagy since this can also favor cancer cells by enhancing their 
survival under metabolic and environmental stresses [103], and therefore should be 
considered with caution.

Artemisinin and chloroquine, along with their derivatives were initially dedicated 
for treating malaria [104], are well-known examples of cell death-related drug repur-
posing. Artemisinins have been reported to induce non-apoptotic programmed cell 
death, especially ferroptosis, in cancer cells [105–109]. Recent clinical trials for artesu-
nate are testing its application in colorectal cancers (NCT02633098) and leukemias 
(CTRI/2024/03/063617). Chloroquine and its derivative hydroxychloroquine are 
approved as autophagy flux inhibitors to treat pancreatic and other cancers [110, 111]. 
Currently, these compounds are undergoing 48 clinical trials related to cancer therapies 
(Database Repurposing Trials In Oncology, ReDO_Trials_DB, https:// www. antic ancer 
fund. org/ en/ datab ase- repur posing- trials- oncol ogy as for 14.08.2024) [112].

Mebendazole (5-benzoyl-1H-benzimidazol-2-ylcarbamate), initially intended as an 
anthelmintic agent [113], is another candidate for repurposing into oncological therapies 
due to its potential to inhibit microtubule polymerization [114, 115]. Notably, besides 
restricting tumor growth, this compound has been effective in preventing the invasion 
and metastasis of malignant tumors and glioblastomas [116, 117]. Zhang [118] and in 
other individual cancer cases [114, 115]. Currently, six mebendazole-related clinical tri-
als are registered in the ReDO_Trials_DB [112].

Deregulated metabolism and increased energy demands are other hallmarks of can-
cer [119, 120] that have been targeted for drug repurposing [121]. Patients with diabe-
tes are generally more prone to several types of cancer [122, 123]. Long-term treatment 
with metformin, approved for obese type 2 diabetes [124], has been observed to lower 
the risk of cancer in diabetic patients, making this drug a potential candidate for repur-
posing [120, 122]. Indeed, there are 133 metformin-related trials in the ReDO_Trials_
DB [112]. However, despite these efforts, results have been far from satisfactory [125, 
126]. Furthermore, the mechanism of action of metformin in tumor cells and the tumor 
microenvironment remains unclear and under discussion. Although high doses of this 
compound impair cellular respiration by inhibiting Complex-1 [127], preclinical stud-
ies have observed a plethora of pleiotropic effects of metformin administration in can-
cer cells that are independent of Complex-1 inhibition [128, 129]. Hopefully, continuous 
research on this compound will eventually allow successful metformin repurposing.

Disulfiram provides another example of a repurposed drug, initially intended to treat 
alcoholism [130], now targeting cancer cell metabolism 129,130. Disulfiram inhibits acet-
aldehyde dehydrogenase activity [131], resulting in alcohol intolerance, as well as the 
blockage of formaldehyde oxidation [132] and deregulated oxidative metabolism in 
cancer cells [133]. Furthermore, the p97 segregase adaptor NPL4 (also known as VCP), 

https://www.anticancerfund.org/en/database-repurposing-trials-oncology
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important for maintaining cellular proteostasis, has been identified as the molecular 
target of disulfiram responsible for its anticancer activity [134]. Currently, there are 13 
disulfiram clinical trials in the ReDO_Trials_DB, including a phase 2/3 application of 
this drug for glioblastoma (NCT02678975) [112].

The ability of cancers to impair and circumvent host immune responses provides 
another therapeutic opportunity [135–138]. Pharmaceutical solutions that could 
increase antitumor immunity, such as immune checkpoint inhibitors, are currently of 
great interest [139]. It has been observed that some vaccines dedicated to infectious dis-
eases (such as rotaviruses, yellow fever, and influenza), when administered intratumor-
ally, can activate antitumor immunity [140–143].

Other drug repurposing strategies arise from the specific impairment of tumor sup-
pressors such as p53 or the retinoblastoma protein in cancer cells [144]. Along these 
lines, quinacrine, an antimalarial agent [145], was found to be a promising candidate 
since it was reported to induce p53 expression in cancer cells [146] and can exert some 
anticancer activity in a p53-dependent manner [146, 147]. The accumulation of p53 has 
also been observed in cancer cells treated with ritonavir, a protease inhibitor used to 
treat human immunodeficiency virus (HIV) infection [148, 149]. Furthermore, other 
reports found this compound capable of reactivating the retinoblastoma protein [147]. 
Currently, there is one active phase 1 clinical trial for the application of ritonavir for 
prostate cancer (NCT05679388) [112]. Notably, statins have also been shown to increase 
p53 activity in cancer cells and thus display anticancer potential [148, 149]. Currently, 
there are 47 statin-related records in the ReDO_Trials_DB, many of which are reaching 
phase 3 or 4 [112].

Tumor expansion is accompanied by an increased demand for nutrients and oxygen by 
cancer cells, leading to the induction of chronic angiogenesis [150]. Although this hall-
mark of cancer cells has resulted in the development of currently used antiangiogenic 
agents that limit tumor blood flow and lead to its starvation [58, 151], the use of these 
drugs is limited and can unfortunately stimulate resistance [152]. Notably, the repurpos-
ing of thalidomide, an immunomodulatory drug initially sold to treat morning sickness 
that was withdrawn worldwide in 1962 after it was linked to severe birth defects [153], 
has shown promise. Thalidomide still remains in use to treat leprosy [153] and is cur-
rently used as an antiangiogenic agent [154, 155]. It is also approved for combination 
therapy in multiple myeloma [156].

Antiangiogenic and anticancer potential has also been observed for the approved 
antifungal agent itraconazole [157, 158]. Currently, there are 17 itraconazole-related 
records in the ReDO_Trials_DB, one of which for ovarian cancer is reaching phase 3 
(NCT03458221). Interestingly, artemisinins have also been assigned antiangiogenic 
activities [159]. In contrast, it has been reported that some anticancer approaches aim to 
induce angiogenesis in order to facilitate drugs delivery [160, 161].

Notably, cancer-related inflammation supports not only angiogenesis but also inva-
sion and metastasis, as well as reprogramming of the tumor microenvironment (TME) 
[162, 163]. Therefore, anti-inflammatory drugs could be good candidates for repurpos-
ing. Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor approved for adult arthri-
tis [164], is extensively being tested in clinical trials (57 registered in ReDO_Trials_DB) 
due to multiple reports of its potential to enhance the chemosensitivity of cancer cells 
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and to reduce the toxicity of marketed chemotherapeutics [165–167]. Similarly, 31 clini-
cal trials are registered for aspirin (ReDO_Trials_DB), which was already suggested to 
have potential as an anticancer drug in the 1970s [168]. More recent research reports 
of aspirin being effective against many types of cancer [169–171] are supported by epi-
demiological analyses [172–175]. Indeed, low-dose aspirin inhibits the production of 
thromboxane A2 (TXA2) by irreversibly inhibiting the enzyme COX-1 in platelets. By 
reducing TXA2, aspirin can help prevent the formation of blood clots and has been 
shown to have potential benefits in reducing the risk of cancer progression and metasta-
sis [176, 177]. Furthermore, aspirin at higher doses is also a more potent COX-2 inhibi-
tor, which can increase its anti-cancer properties against tumors that overexpress this 
enzyme [175]. Numerous studies shown that daily low-doses of aspirin may significantly 
reduce the risk of colon cancer and rectal cancer [178] and breast cancer [179, 180]. 
Recent results from a 20-year cohort study involving 1,909,531 individuals in Denmark 
have shown that long-term low-dose aspirin use is associated with slightly to moder-
ately reduced risks for several specific cancers [181]. However, there was no reduction in 
overall cancer risk for some common cancers [181]. Similar or slightly stronger inverse 
associations were observed for the consistent use of high-dose aspirin [181].

Interestingly, the ASPirin in Reducing Events in the Elderly (ASPREE) study, which 
was double-blind and performed on a large cohort (for 4.7 years and over 19,000 individ-
uals older than 65–70, that did not have cardiovascular disease, dementia, or disability), 
showed no advantage of taking low-dose aspirin, and in fact increased the risk of being 
diagnosed with stage 3 or 4 cancers as well as increased mortality rates compared to the 
placebo [182]. In contrast, prior randomized controlled trials, mainly involving younger 
individuals, demonstrated a delayed cancer benefit with aspirin [182]. However, these 
study conclusions are under discussion and should be taken with caution, as deaths were 
classified according to the underlying cause by adjudicators who were unaware of the 
trial-group assignments. Furthermore, hazard ratios were calculated to compare mortal-
ity between the aspirin group and the placebo group, and post hoc exploratory analyses 
of specific causes of death were performed [182].

Furthermore, some of the adverse effects of many approved chemotherapeutics can 
be reduced with the use of additional anti-inflammatory compounds and beta-blockers 
to reduce cardiotoxicity [183, 184]. The latter (especially propranolol and timolol) have 
been reported to have anticancer activity [185–187]. Taken together, these examples 
provided illustrate the vast potential of drug repurposing in oncology.

Discussion
Although the drug repurposing approach seems like an attractive solution to benefit 
both cancer patients and health systems, its results have been below expectations 
despite the considerable efforts and high academic attention. Continuous research 
and technological development have yet to yield breakthrough solutions. While there 
are some examples of successful drug repositioning, the majority of candidates, like 
metformin, have remained in the reassignment pipelines for many years. As of August 
14, 2024, the ReDO_Trials_DB database reports 898 (409 controlled) trials related to 
182 drugs (with metformin being the most commonly tested one) and involving 157,295 
patients [112] (Fig. 1). Notably, however, less than 5% of these trials are sponsored by 
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pharmaceutical companies, with the vast majority funded by non-profit organizations 
[188, 189]. Furthermore, 139 clinical trials have reached phase 3 or 4 [112].

Although these numbers may initially seem impressive, they are modest compared to 
data from the GlobalData’s Clinical Trials Intelligence Center ((https:// www. clini caltr 
ialsa rena. com/ spons ored/ oncol ogy- in- 2024- the- clini cal- trial- trends- resha ping- the- 
role- of- cros/). As of December 15, 2023, 6,528 oncology-related trials were noted, with 
another 569 planned to begin. In the DrugBank database ((https:// go. drugb ank. com/ 
relea ses/ latest), there are 4,493 approved drugs (2812 small molecules and 1681 bio-
technology drugs) that can be directed against over 3,000 unique targets (Fig. 1). Addi-
tionally, there are over 333 withdrawn drugs (302 small molecules and 31 biotechnology 
drugs), 8,000 investigational ones (5311 small molecules and 2752 biotechnology drugs), 
and about 6732 experimental compounds (6353 small molecules and 379 biotechnol-
ogy drugs). Taken together, drug repurposing in oncology, despite its potential and large 

Fig. 1 A. Repurposing trials are a modest percentage of all oncology clinical trials. B The most popular drugs 
in repurposing trials (C) and the most popular cancers to be targeted in controlled trails of repurposed drugs. 
The data were obtained from the ReDO_Trials_DB database and the GlobalData’s Clinical Trials Intelligence 
Center (December 15, 2023)

https://www.clinicaltrialsarena.com/sponsored/oncology-in-2024-the-clinical-trial-trends-reshaping-the-role-of-cros/
https://www.clinicaltrialsarena.com/sponsored/oncology-in-2024-the-clinical-trial-trends-reshaping-the-role-of-cros/
https://www.clinicaltrialsarena.com/sponsored/oncology-in-2024-the-clinical-trial-trends-reshaping-the-role-of-cros/
https://go.drugbank.com/releases/latest
https://go.drugbank.com/releases/latest
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number of possible candidates, remains underappreciated and mostly limited to aca-
demic research and small biotech companies.

Notably, the business models of Big Pharma rely strongly on market exclusivity for 
their drugs, allowing them to sell their drugs at high prices [190–192]. Since repur-
posed drugs cannot usually be considered novel chemical entities and their structures 
are already known, novel patent claims to the active pharmaceutical ingredient are not 
possible [193]. The repurposed drug can only be protected at the level of the ‘method 
of use’ for the new indication, although such protection is harder to obtain and costs 
more [193]. Finally, the use of patents excludes off-label prescriptions, where medica-
tions are prescribed for indications or populations for which they have no regulatory 
approval [194]. Numerous solutions have been suggested to motivate Big Pharma efforts 
towards repurposing (tax breaks, FDA-priority review vouchers, or funding clinical tri-
als) [195, 196]. However, given the current business model Big Pharma operates under, 
implementing these initiatives probably will not be a game changer [188]. This conflict 
of interest is well illustrated by thalidomide approvals. Despite this drug in combination 
with melphalan–prednisone is comparable to the dramatically more expensive lenalido-
mide, the more expensive new drug was approved as the standard therapy [197, 198].

Indeed, mainly academic and independent research provides the rationale for using 
off-patent medications in cancer treatment [40]. However, in the case of drug repurpos-
ing, these academic approaches often lack specific insights that are exclusive to phar-
maceutical companies. Due to limited resources, lack of data, technology, funding, and 
experience, many academic attempts at drug repurposing are often “fashion” driven 
(metformin, statins, aspirin, ascorbic acid, etc.) [112] and thus oriented on drugs that 
may be easy to obtain, publish, and get funded for their application (Fig. 1B). However, 
this approach does not consider that millions of people who are cancer patients or will 
develop cancers are already taking these prescriptions, whereas their benefits on a wide 
population scale in terms of cancer risks are usually under discussion or not properly 
documented.

Furthermore, academic research is the main contributor of related omics and epide-
miological data that are further used for machine learning and other applications uti-
lized by drug repositioning strategies. Notably, retrospective observational studies are 
subject to immortal time bias and selection bias [199], resulting in frequent overestima-
tions of their advantages for the treatment group [200]. This case is well illustrated by 
the numerous correlations between metformin treatments and the incidence of cancer 
[201]. Furthermore, since metformin’s original target group were diabetic patients who 
differ from cancer patients, selection bias occurred [202]. Additionally, computational 
strategies for predicting drug reassignment are only as good as the reliability of the input 
data and can often discourage target-centric and drug-centric strategies. Phenotype-
based high throughput screening strategies, due to the costs of libraries and extensive 
labor, are usually beyond basic research funding schemes. Finally, the costs and ability to 
design dedicated and sufficient clinical trials that can include various cancer types and 
patient groups, remain another serious barrier for academic approaches.

The complexity of cancer limits the efficacy of monotherapies, whereas combination 
therapies come with specific challenges and limitations that often translate into drug 
repurposing approaches [199, 203, 204]. Notably, combination therapy trials are more 
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complex and thus cost more than those for monotherapies [205]. Since phase 2 trials are 
usually the turning point for a drug’s fate, progressing them towards more randomized 
larger cohort research trials requires promising efficacy results in order to justify the 
financial burden [199].

Many clinical trials fail due to insufficient cancer patient accrual [206]. Cancer patients 
are often older people with accompanying diseases and undergoing different cancer-
related or unrelated treatments, which may result in unexpected side effects and death 
during the trials [33, 207]. Indeed, combinational therapies do not guarantee better effi-
cacy [33]. For example, combined dacarbazine with cisplatin, carmustine, and tamox-
ifen for metastatic (stage IV) melanoma treatment is comparable in terms of patient 
survival with monotherapy based on high-dose dacarbazine [207, 208]. Unfortunately, 
dosages that may be well tolerated in trials conducted using healthy subjects or when 
used for treating the diseases the drug was originally intended for may not be achievable 
in cancer patients [33]. Repurposed drugs intended for specific targets might not have 
the same efficacy in cancer cells or in the presence of other drugs [33]. Therefore, their 
repositioning may require higher doses, which can result in novel distinct mechanisms 
of action and consequently unforeseen adverse effects [209, 210]. For example, aspirin 
repurposed for use in high doses may lead to an increased risk of gastrointestinal bleed-
ing, while simvastatin and metformin contribute to the development of hypolipidemia 
and hypoglycemia. All these issues stress the importance of quality preclinical research 
that will allow only the most effective and safest combinations to be trialed in phases 2 
and 3 [204, 211, 212].

Importantly, recent scientific and technological breakthroughs are becoming 
more economically available and thus possible to incorporate into high-throughput 
screening pipelines, as well as drug-centric approaches. Starting with omics approaches, 
which allow the determination of molecular mechanisms of repurposing candidates, 
and coupling this with failed drugs could provide valuable insight into the cellular 
proteomic, metabolomic, and transcriptomic changes [44, 213–222] in various cancers. 
Importantly, single-cell sequencing seems to be a way to address cancer heterogeneity 
[223], while the rapid growth and development of databases provide machine learning 
and computational approaches with more reliable insights [224–227]. Furthermore, 
the development of novel drug delivery methods that allow more specific and even 
compartment-targeted application of repurposed drugs may contribute to the success of 
novel repurposing strategies [228–230].

Conclusions and perspectives
Repurposed drugs have the undeniable potential to address the shortage of new drugs 
and combat acquired chemotherapy resistance. Additionally, many healthcare systems 
struggle to provide patients with expensive new generations of chemotherapeutics, let 
alone personalized therapies. The financial advantages of drug repositioning could bene-
fit many patients worldwide. However, despite research progress, multiple pharmacolog-
ical challenges and obstacles need to be addressed to effectively utilize the opportunity 
of repurposed drugs in cancer treatment. Importantly, the field requires programs, regu-
lations, and government-level funding to promote and support collaboration between 
academia and the pharmaceutical industry [40, 190]. Such programs in the USA and 
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UK have allowed the transfer of a large number of failed drugs to academic research 
for repurposing [231]. Furthermore, continuous efforts and lobbying by academic and 
non-profit organizations are necessary to popularize and develop new drug discovery 
concepts.
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