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Background
Leukemia and multiple myeloma (MM) are blood cell cancer [1, 2].Clinical drugs, such 
as the proteasome inhibitor bortezomib, immunomodulatory drugs (IMiDs), lenalido-
mide (Len) and pomalidomide (Pom), have been approved by the FDA for the treat-
ment of blood cancer [3–5].Due to the lack of early diagnosis and drug resistance, these 

Abstract 

Background:  The protein cereblon (CRBN) mediates the antileukemia effect of lena-
lidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitina-
tion and degradation, through which Len exhibits its antileukemia and antimyeloma 
activity. Therefore, the protein level of CRBN might affect the antiproliferative effect 
of Len. In this study, we explored the interactome for CRBN using proximity labeling 
technique TurboID and quantitative proteomics, and then investigated the antileuke-
mia effect of Len.

Methods:  The primary acute myeloid leukemia (AML) cells and AML cell lines were 
used to explore the functions of histone demethylase KDM5C on the antileukemia 
effect of Len. The cell viability and CRBN protein levels were evaluated in these cell 
lines. In addition, the KDM5C inhibitors were used to determine the effects of KDM5C 
enzymatic activity on the viability of AML cell lines.

Results:  We identified that histone demethylase KDM5C was a CRBN-interacting 
protein. Biochemical experiments found that the CRBN-interacting protein KDM5C 
could stabilize CRBN and enhance the antileukemia effect of Len in an enzyme activity-
independent manner. Furthermore, our studies revealed that the small-molecule 
compound MLN4924 could increase CRBN by elevating KDM5C.The combination 
of MLN4924 and Len can further increase the sensitivity of primary AML cells and AML 
cell lines to Len.

Conclusions:  This study provides a possible strategy for a combination treatment 
with MLN4924 and Len for leukemia.
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diseases progress rapidly and become fatal. Therefore, novel methods and strategies for 
the diagnosis and treatment of leukemia and MM are needed.

Cullin 4-RING E3 ligase (CRL4CRBN) consists of cullin 4A/B, DDB1, ROC1, and CRBN 
[6–8]. As a substrate receptor of the CRL4 E3 ligase, CRBN binds to different substrates 
and promotes the ubiquitination of these substrates. Furthermore, CRBN is the primary 
target of thalidomide (Thal) and its analogs Len and Pom [9]. Therefore, CRBN medi-
ates the teratogenic effect of Thal [9] and the anticancer effects of Len and Pom in blood 
cancer [7, 8].

Upon binding to Len, CRBN can recruit and promote the ubiquitination-mediated 
degradation of new substrates (neo-substrates) of IKZF1/3 in AML cells [10]. Therefore, 
the sensitivity of AML to Len could be affected by the protein level of CRBN [11]. In 
line with this, CRBN deficiency in cells leads to Len and Pom resistance [12, 13]. The 
anticancer effect of Len could be enhanced by arsenic trioxide through increasing CRBN 
mRNA levels [14]. The attenuation of the ubiquitination-mediated degradation of CRBN 
also enhances the anticancer effect of Len [15, 16]. The blockage of CRBN cleavage sta-
bilized CRBN and then potentiated the anticancer effect of Len [17, 18]. The small-mole-
cule inhibitor SHIN1 increased CRBN by blocking the autophagic degradation of CRBN 
and then enhanced the anticancer effect of Len [19]. Taken together, these data demon-
strated that CRBN modulated Len sensitivity.

Here, we identified the histone demethylase KDM5C in the CRBN interactome. Our 
proteomic and biochemical approaches revealed that KDM5Ccould bind to and stabilize 
CRBN, and the KDM5C inhibitor could not affect CRBN, which suggest that KDM5C 
regulated CRBN in an enzyme activity-independent manner. Furthermore, we discov-
ered that the small-molecule compound MLN4924 increased KDM5C and subsequently 
stabilized CRBN, therefore potentiating the antileukemic effect of Len. Our discovery 
revealed that the histone demethylase KDM5C regulated the sensitivity of AML to Len, 
which might benefit the combination therapy for leukemia patients.

Methods
Reagents

The small-molecule compounds and reagents used in this work were purchased from 
the following companies: anacardic acid (AA, HY-N2020), bafilomycin A1 (Baf A1, 
HY-100558), 2-bromohexadecanoic acid (2-BP, HY-111770), cycloheximide (CHX, 
HY-12320), and Y-27632 (HY-10071) were obtained from MedChemExpress. Cell 
Counting Kit-8 (CCK-8, B34304), MLN4924 (S7109), KDM5-IN-1 (HY-100014), CPI-
455 (HY-100421), lenalidomide (Len, CC-5013), pomalidomide (Pom, CC-4047), and 
MG132 (S2619) were ordered from Selleck. Biotin (V900418) was acquired from Sigma–
Aldrich. NeutrAvidin agarose resin (29,201) was purchased from Thermo Fisher Scien-
tific. Protein A/G agarose resin (36403ES08) was obtained from Yeasen Biotechnology 
(Shanghai, China). Anti-HA magnetic beads (B26201), FLAG peptide (B23111), and 
FLAG affinity gel (B23102) were acquired from Bimake.

The following antibodies were purchased from the following companies: anti-
FLAG M2 (F1084) from Sigma; anti-KDM5C (ab194288) from Abcam; anti-CRBN 
(D8H3S),anti-H3K4me3 (9751 s),and anti-H3 (4499 s) were obtained from Cell Signal-
ing Technology; anti-HA (51,064–2-AP), anti-β-actin (20,536–1-AP), and anti-GAPDH 
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(60,004–1-IG) were ordered from ProteintechGroup; anti-GFP (CPA9056), anti-
HA (CPA9058), and anti-IKZF1 (MB0092) were acquired from Bioworld. The sec-
ondary antibodies (111–035-045 and 115–035-062) were obtained from Jackson 
ImmunoResearch.

Plasmid construction

Plasmids were constructed according to a previous procedure [20, 21]. The shRNA 
plasmids were generated using the pLKO.1-TRC lentiviral vector according to a previ-
ous method [22]. KDM5C was obtained from MiaoLing Biology. The FLAG-KDM5C 
forward oligonucleotide (5′-GAG​GTG​ACC​CTG​GAT​GAG​AA-3′), KDM5C reverse 
complementary oligonucleotide (5′-CAG​GAG​CTG​AGG​TCT​GAA​C-3′), CRBN for-
ward oligonucleotide (5′-ATG​CTG​AGA​CCT​TAA​TGG​ACAGA-reverse-3′), and 
CRBN reverse oligonucleotide (5′-AAG​TCG​CTG​GAT​AGC​ACT​GC-3′) were synthe-
sized by GeneWiz (China). All constructed plasmids were verified by DNA sequencing 
(GeneWiz).

Primary AML cells and cell lines

The human embryonic kidney cell line HEK293T, cervical cancer cell line HeLa, mouse 
hippocampal neuronal cell line HT22, and AML cell lines NB4, K562 and THP-1 were 
obtained from the American Type Culture Collection (ATCC). MV4-11 was a kind gift 
from Dr. Dong Chen at Soochow University. NB4, K562, THP-1, and MV4-11 cells were 
cultured in basic RPMI 1640 medium (C11875500BT, Gibco). HEK293T, HT22 and 
HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, SH30243.01, 
HyClone). The growth media were supplemented with 10% fetal bovine serum (FBS, 
YS210414, EallBio Life Sciences), 100 units/mL penicillin and 100 µg/mL streptomycin 
(C100C5, NCM Biotech). The primary AML cells were separated from the bone mar-
row sample. Cells were then cultured in RPMI-1640 medium. The use of human tissue 
samples was approved by the Ethics Committee of the Second Affiliated Hospital of Soo-
chow University (Approval No: SUDA20240522H04, date 1 November 2024).

Construction of stable cell lines

The shRNA-EGFP vector with short hairpin RNA (shRNA) sequence targeting the 
KDM5C gene (GAG​AGG​AGC​TAG​AGC​CAA​A) was purchased from GeneChem 
(GENE: REVG006-1). A lentiviral shRNA vector was used as a control (Ctrl-shNC). Both 
vectors contained enhanced green fluorescence protein (EGFP) and a puromycin resist-
ance marker. Lentiviral particles were generated according to a previously described 
method [23]. Briefly, the shNC or shKDM5C lentiviral particles were transfected into 
HEK293T, K562, and NB4 cell lines, which were subsequently selected with 1  µg/mL 
puromycin (P8230, Solarbio Life Sciences) for two weeks. Immunofluorescence and 
immunoblotting were used to verify the knockdown efficiency of KDM5C in HEK293T, 
K562 and, NB4 cells.

siRNA and plasmid transfection

siRNAs were synthesized by Guangzhou RiboBio Co (China). HEK293T cells were trans-
fected with siNC (Cat #: 160,818), siKDM5C #1(target sequence: GAG​AGG​AGC​UAG​
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AGC​CAA​A), siKDM5C #2(target sequence: CAC​ACU​UGA​GGC​CAU​AAU​C), and siK-
DM5C #3 (target sequence: CAG​AGA​AGC​UAG​ACC​UGA​A) using LipoRNAiMAX 
(13,778–150, Invitrogen). The plasmid of pLVX-FLAG-KDM5C was transfected using 
Lipofectamine 3000 (L3000-015, Invitrogen).

Proximity‑labeling and MS analysis

The optimized proximity-dependent biotinylation assay was performed according to our 
previous study [24]. Briefly, the plasmids of pcDNA3.1, CRBN-FLAG-NLS-TurboID, and 
CRBN-FLAG-NES-TurboID were transfected into HEK293T cells for 48 h, and subse-
quently treated with biotin (50 μM) for 30 min. The HEK293T cells were collected, lysed, 
and the resulting cell lysates were digested for MS analysis using a procedure described 
previously [24].

Quantitative PCR (qPCR)

The qPCR was performed according to a previous method [25]. Briefly, total RNA was 
isolated using TRIzol (R401-01, Vazyme), and then HiScript III All-in-one RT SuperMix 
(R333, Vazyme) was used to synthesize the cDNA library. A Biotool SYBR Green One 
Step qRT‒PCR Kit was used to perform qPCR on an Applied Biosystems 7500 Real‒
Time PCR system. All the results were normalized to that of GAPDH. The qPCR prim-
ers (KDM5C-forward: GGG​TCC​GAC​GAT​TTC​CTA​CC; KDM5C-reverse: ATG​CCC​
GAT​TTC​TCT​GCG​ATG; CRBN forward: ATG​CTG​AGA​CCT​TAA​TGG​ACAGA; CRBN 
reverse: AAG​TCG​CTG​GAT​AGC​ACT​GC; β-actin forward: GGG​AAA​TCG​TGC​GTG​
ACA​TT; and β-actin reverse: GGA​ACC​GCT​CAT​TGC​CAA​T) were synthesized and 
purified via HPLC by GeneWiz.

CCK‑8 assay

The relative cell viability was measured using a CCK-8 assay. Cells were seeded and 
cultured in 96-well plates (1000 cells/well) for different durations after drug treat-
ment. CCK-8 reagent (10 µL/well) was added to the 96-well plates and incubated for 
1 h at 37 °C. The absorbance was measured at 450 nm by a Tecan Infinite M1000 PRO 
(Switzerland).

Protein stability experiments

Cycloheximide (CHX) chase experiments were performed to measure protein degrada-
tion. HEK293T cells overexpressing FLAG or FLAG-KDM5C were treated with CHX 
(100 µg/mL) for the indicated times. For proteasome inhibition experiments, HEK293T 
cells stably expressing siNC or siKDM5C were treated with DMSO or MG132 (10 µM) 
for 12 h and the lysosomal inhibitor Baf A1 (200 nM) for 24 h. The cell lysates were har-
vested and subjected to immunoblotting analysis.

Western blotting analysis

Cell lysates or immunoprecipitates were harvested and subjected to western blotting 
according to a previously described method [26]. NcmECL Ultra substrate (P10300, 
NCM Biotech) was used to visualize and analyze protein expression.
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lmmunoprecipitation

FLAG affinity gel (B23102, Bimake) was used to purify FLAG-tag proteins. Cells express-
ing FLAG-tag proteins were lysed in RIPA buffer supplemented with protease inhibitor 
cocktail (B14012, Bimake). After removal of cell debris by centrifugation, 50µL FLAG 
affinity gel was added to 500 µg of protein extract and incubated overnight at 4 °C. The 
beads were then washed three times and boiled with 2 × SDS loading buffer for west-
ern blotting. The endogenous immunoprecipitation assays were performed with the 1 µg 
IgG/KDM5C antibody and 50µL protein A/G agarose beads. Specific antibodies against 
FLAG M2 (1:1,0000, F1084, Sigma), HA (1:1,000,51,064–2-AP, Proteintech Group), 
KDM5C (1:1,000, ab194288, Abcam), CRBN(1:1,000, 71,810, CST), GAPDH(1:l,0000, 
60,004–1-IG, Proteintech Group), and the secondary antibodies (111–035-045 and 115–
035-062, Jackson ImmunoResearch) were used to detect the indicated proteins.

Results
The histone demethylase KDM5C interacts with CRBN

To discover new regulators for CRBN, we used the proximity labeling technique TurboID 
and quantitative proteomics to identify the CRBN-interacting proteins (Fig.  1A). The 
experiments identified NAC1, PICALM, and histone demethylase KDM5C as specific 
CRBN-interacting proteins (Fig. 1B and Supplemental Fig. 1A). To further confirm these 
results from mass spectrometry, we transfected the HA-CRBN and FLAG-KDM5C, 
FLAG-PICALM, or FLAG-NAC1 plasmids into HEK293T cells and then examined the 
interaction between CRBN and KDM5C, PICALM, or NAC1. Coimmunoprecipita-
tion assays demonstrated that Flag-KDM5C, FLAG-PICALM, or FLAG-NAC1 bound 
to HA-CRBN (Fig. 1C and Supplemental Fig. 1B). We also used Flag-CRBN to precipi-
tate endogenous KDM5C, and the results revealed that CRBN could bind to endogenous 
KDM5C (Fig. 1D). Furthermore, we performed the endogenous coimmunoprecipitation 
assays in two AML cell lines THP1 and NB4, and the results disclosed that endogenous 
KDM5C could bind to endogenous CRBN in AML cell lines (Fig. 1E, F). Taken together, 
these data suggested that the histone demethylase KDM5C interacted with CRBN.

KDM5C stabilizes CRBN

Our proteomic and biochemical methods demonstrated that KDM5C interacted with 
CRBN (Fig.  1). As a histone demethylase, KDM5C regulates gene transcription by 
removing methyl groups from lysine 4 of histone H3 in an enzyme activity-dependent 
manner [27]. We then sought to examine the possible regulatory effect of KDM5C on 
CRBN. We overexpressed KDM5C in HEK293T cells and then immunoblotted the 
cell lysates. The results indicated that KDM5Cstabilized CRBN, as the protein level of 
CRBN increased in the KDM5C-overexpressing HEK293T cells (Supplemental Fig. 2). 
Conversely, we also knocked down endogenous KDM5C in HEK293T cells. CRBN was 
decreased in KDM5C-deficient HEK293T cells (Fig. 2A). CRBN mediated the anticancer 
effects of lenalidomide. We then validated the regulatory effect of KDM5C on CRBN 
in the AML cell lines NB4, K562, and MV4-11. The results were consistent with the 
findings in HEK293T cells that KDM5C stabilized CRBN in leukemia cells (Fig. 2B–D). 
Furthermore, the qPCR results indicated that KDM5C did not alter the mRNA level of 
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CRBN (Fig. 2E). Taken together, these results suggested that KDM5C increased CRBN 
at the protein level. Since KDM5C is a demethylase that can remove lysine tri-/dime-
thyl modifications from histone H3 and nonhistone substrates, we investigated whether 
demethylase activity is required for the regulation of KDM5C on CRBN protein levels. 
We used two traditional KDM5 inhibitors, CPI-455 and KDM5-IN-1, to suppress the 
activity of the demethylase KDM5C and then examined the protein level of CRBN. The 
western blotting results indicated that blocking KDM5C indeed increased H3K4me3 but 

Fig. 1  The histone demethylase KDM5C interacts with CRBN. A The CRBN-interacting proteins were labeled 
with biotin, purified with NeutrAvidin, digested with trypsin, and analyzed by LC‒MS/MS. B Information for 
MS-identified tryptic peptides from KDM5C. C HA-CRBN interacted with FLAG-KDM5C. HEK293T cells were 
transfected with the indicated plasmids for 48 h, collected, lysed, and subjected to immunoprecipitation 
assay and western blotting. D Exogenous CRBN interacted with endogenous KDM5C. The plasmids of 
pcDNA3.1 or FLAG-CRBN were transfected into HEK293T cells for 48 h. The cells were collected, lysed, 
and subjected to immunoprecipitation and western blotting. E, F Endogenous KDM5C interacted 
with endogenous CRBN in AML cells. NB4 (E) or THP-1 (F) cells were collected, lysed, and subjected to 
immunoprecipitation and western blotting using the indicated antibodies
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Fig. 2  KDM5C stabilizes CRBN. A KDM5C and CRBN were analyzed by western blotting after KDM5C was 
knocked down by siRNA in HEK293T cells for 48 h. B–D Western blotting was used to analyze KDM5C and 
CRBN in NB4 (B), K562 (C), and MV4-11 cells (D). The cells were transfected with siRNA for 48 h, collected, 
lysed, and subjected to western blotting using the indicated antibodies. E CRBN mRNA levels were analyzed 
by qPCR. The siKDM5Cs were transfected into HEK293T cells, and the mRNAs were extracted for qPCR analysis. 
The data are shown as the means ± SEMs (n ≥ 3). Student’s t test, *P < 0.05; **P < 0.01; ****P < 0.0001; ns: not 
significant
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did not affect the protein levels of CRBN (Supplemental Fig. 3), which suggested that the 
enzyme activity of KDM5C was not essential for the regulation of CRBN by KDM5C.

The small‑molecule compound MLN4924 increases KDM5C and CRBN

To further investigate the possible degradation pathways by which KDM5C regulates 
CRBN, we blocked the ubiquitin‒proteasome system (UPS) and the autophagy‒lyso-
some pathway (ALP) using their inhibitors MG-132 and bafilomycin A1. The results 
revealed that blocking the UPS and ALP did not restore the protein levels of CRBN in 
KDM5C-deficient cells (Supplemental Fig.  4), which indicated that the two major cel-
lular degradation pathways were not required for the regulation of CRBN by KDM5C. 
CRBN mediated the antiproliferative effects of Len in blood cancer cells. To identify 
the possible small-molecule compounds that increase KDM5C and therefore enhance 
the anticancer effects of Len in leukemia. We treated HEK293T cells with inhibitors 
for different signaling pathways. The results demonstrated that the neddylation inhibi-
tor MLN4924 increased KDM5C (Fig. 3A). We further confirmed this finding using two 
different cell lines, HeLa and HT22. MLN4924 increased KDM5C and CRBN in these 
two cell lines (Fig.  3B). Immunoblotting of the KDM5C substrate H3K4me3 unveiled 
that H3K4me3 decreased upon MLN4924 treatment (Fig.  3B). To further confirm the 
regulatory effect of KDM5C on CRBN in AML cell lines, we treated THP-1, NB4, and 
K562 cells with MLN4924.These results were consistent with the data from nonleuke-
mia cell lines showing that MLN4924 increased KDM5C and CRBN in AML cell lines 
(Fig. 3C–E).

MLN4924 stabilizes CRBN by increasing KDM5C

The aforementioned experiments demonstrated that MLN4924 increased KDM5C and 
CRBN (Fig. 3).We next sought to validate the essential role of KDM5C in the regulation 
of CRBN by MLN4924. To do so, we overexpressed KDM5C in HEK293T cells and then 
treated the cells with MLN4924. Immunoblotting of cell lysates revealed that MLN4924 
could increase exogenous KDM5C and further stabilize CRBN (Fig. 4A). These data sug-
gested that MLN4924 could stabilize CRBN by increasing KDM5C. To further demon-
strate that MLN4924 regulated CRBN through KDM5C, we knocked down KDM5C in 
HEK293T cells using siKDM5C and then treated these cells with MLN4924. We dis-
closed that MLN4924 did not increase CRBN in KDM5C-deficient cells (Fig. 4B), which 
suggested that MLN4924 increased CRBN by stabilizing KDM5C. Consistent with this 
finding, our CHX-chase experiments further revealed that MLN4924 stabilized KDM5C 
and CRBN (Fig. 4C).

MLN4924 enhances the antileukemia effect of Len

As KDM5C stabilized CRBN, we hypothesize that the antileukemia effects should be 
attenuated in KDM5C-deficient cells. We treated stable shNC and shKDM5C AML 
cell lines K562 and NB4 with Len, and the results indicated that Len did not inhibit the 
proliferation of stable shKDM5C AML cell lines K562 and NB4 (Fig. 5A–D). Given that 
MLN4924 increased CRBN through KDM5C, which mediates the antimyeloma effects 
of Len, we further explored whether MLN4924 could regulate the antileukemia activity 
of Len. To this end, we treated the primary AML cells and three different AML cell lines, 
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K562, THP-1, and KG-1, with MLN4924 and/or Len, and then assessed the cell prolif-
eration using CCK-8 assays. Our results indicated that MLN4924 enhanced the antileu-
kemic effects of Len (Fig. 5E–H and Supplemental Fig. 5).We also used the Len analog 
Pom to treat K562 and KG-1 cells, and the results disclosed that MLN4924 potentiated 
the antileukemia effect of Pom (Supplemental Fig. 6). Furthermore, biochemical experi-
ments demonstrated that MLN4924 further decreased the protein level of IKZF1 upon 
Len treatment (Supplemental Fig. 7). Taken together, our data suggested that MLN4924 
enhanced the antileukemic effect of IMiDs in primary AML cells and AML cell lines 
(Fig. 5I).

Fig. 3  The small-molecule compound MLN4924 increases KDM5C and CRBN. A HEK293T cellswere treated 
with various types of inhibitors (1 µM MLN4924, 1 µM Btz, 1 µM MG132, 100 nM Baf A1, 1 µM Y-27632, 1 µM 
AA, and 1 µM 2-BP) for 24 h and the resulting cell lysates were subjected to western blotting. B–E MLN4924 
(1 µM) was used to treat HeLa, HT22 (B), THP-1 (C), NB4 (D), and K562 (E) cells for 24 h and the cell lysates 
were used for western blotting. The data are shown as the means ± SEMs (n = 3).Student’s ttest, *P < 0.05; 
**P < 0.01; ns: not significant
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Discussion
Mutations in KDM5C and CRBN resulted in intellectual disability [28–30], which sug-
gested a possible correlation between KDM5C and CRBN. Here, we demonstrated that 
KDM5C could potentiate the antileukemia effect of Len through stabilizing CRBN. 
However, the possible functions of KDM5C and CRBN in intellectual disability need to 
be further investigated. Our results indicated that the enzyme activity of KDM5C was 
not essential for the regulation of CRBN by KDM5C (Supplemental Figs.  1, 2), which 
suggested that the nonenzymatic functions of KDM5C are involved in the sensitivity of 
AML to IMiDs. Furthermore, we revealed that the small molecule compound MLN4924 
increased KMD5C and subsequently stabilized CRBN, therefore potentiating the 

Fig. 4  MLN4924 stabilizes CRBN by increasing KDM5C. A HEK293T cells were transfected with the 
FLAG-KDM5C plasmid for 24 hand treated with MLN4924 (1 µM) for 24 h, and whole-cell lysates were 
immunoblotted for KDM5C. B MLN4924 did not increase CRBN in KDM5C deficient HEK293T cells. 
HEK293Tcells were transfected with siKDM5Cfor 48 h, treated with MLN4924 (1 µM) for 24 h, and lysed for 
Western blotting. C HEK293T cells were treated with 1 µM MLN4924 for 12 h, and then the cells were treated 
with the 100 µg/mL CHX for the indicated time. The data are shown as the means ± SEMs (n = 3), Student’s t 
test,*P < 0.05;****P < 0.0001
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antileukemia effect of IMiDs and providing a novel molecular mechanism for the treat-
ment of AML using MLN4924 and IMiDs.

CRBN can be degraded through the UPS [31, 32] and ALP [19]. However, we found 
that UPS and ALP were not required for the regulation of KDM5C on CRBN. Our previ-
ous study showed that CRBN can be cleaved upon caspase-8 activation [17]. However, we 
did not observe the cleaved bands of CRBN, which indicated that caspase-8 might not be 
required for the regulation of KDM5C on CRBN. Therefore, the molecular mechanisms 
underlying the regulatory effect of KDM5C on CRBN need to be further investigated.

Methylation is a well-known epigenetic event in AML [33]. Histone and DNA methyl-
ations are deposited and eliminated by the corresponding epigenetic enzymes, and could 
control gene regulation in AML. Here, we revealed a novel role for the histone dem-
ethylase KDM5C in the enhancement of the antileukemia effect of IMiDs. Although our 
results revealed that the enzyme activity of KDM5C was not required for this regulation, 
epigenetic modifiers, such as the DNA methyltransferase DNMT3A [34] and histone 
methyltransferase EZH2 [35, 36], could regulate the disease stages of AML. Therefore, 
the roles of epigenetic enzymes in AML are complicated and waiting to be solved.

Fig. 5  MLN4924 enhances the antileukemia effect of Len. A–D K562 (A, B) and NB4 (C, D) cells with stable 
KDM5C knockdown were treated with lenalidomide (10 µM) for 4 (A and C) or 5 (B and D) days, and the 
cell proliferation was examined by CCK-8. shNC was used as a negative control. The data are shown as the 
means ± SEMs (n = 4), and Student’s t test was used to calculate the P values. *P < 0.05; ns: not significant. 
E–H K562, THP-1, KG-1, and primary AML cells were treated with MLN4924 (40 nM) for 18 h, and then treated 
with lenalidomide (10 µM) for 4 days. Cell viability was measured by a CCK-8 assay. The data are shown as 
the means ± SEMs (n = 4); **P < 0.01;***P < 0.001;****P < 0.0001; ns: not significant. I Proposed model for the 
regulation of KDM5C on the antileukemia effect of IMiDs
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Conclusions
This work revealed that the histone demethylase KDM5C regulated the protein stability 
of CRBN by its non-enzymatic function and that the MLN4924-KDM5C axis increased 
CRBN, thus potentiating the antileukemia effect of Len, which may provide an alterna-
tive combination therapy for AML.
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