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Abstract 

Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E‑cadherin 
complex, inducing its ubiquitination and degradation, thus inducing epithelial‑to‑mes‑
enchymal transition. Most of the knowledge about the protein was associated to its E3 
ubiquitin ligase canonical role. However, important recent published research has high‑
lighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, 
underscoring its involvement in the N6‑methyladenosine  (m6A) writer complex and its 
impact on the methylation of RNA. The involvement of Hakai in this mRNA modifica‑
tion process has renewed the relevance of this protein as an important contributor 
in cancer. Moreover, Hakai potential as a cancer biomarker and its prognostic value 
in malignant disease also emphasize its untapped potential in precision medicine, 
which would also be discussed in detail in our review. The development of the first 
small‑molecule inhibitor that targets its atypical substrate binding domain is a promis‑
ing step that could eventually lead to patient benefit, and we would cover its discovery 
and ongoing efforts toward its use in clinic.
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Graphical Abstract

Introduction
Hakai [Cbl proto-oncogene-like 1 (CBLL1) gene] protein was first identified as a specific 
E3 ubiquitin ligase for E-cadherin [1], and its name, derived from the Japanese word for 
“destruction,” reflects its role in ubiquitinating and subsequently degrading the E-cad-
herin complex. Ubiquitination is the second most common post-translational modifica-
tion after phosphorylation, and it plays a role in regulating protein stability, interactions, 
and activity. During the ubiquitination process, specific target proteins are tagged by 
ubiquitin, a small 76 amino-acid-long protein [2]. Ubiquitination not only leads to deg-
radation by the proteasome, lysosomes, or autophagy but also regulates other processes 
such as transcription, DNA repair, or protein localization [3]. The ubiquitination system 
operates as an enzymatic cascade consisting of an activating enzyme (E1), a conjugating 
enzyme (E2), and a ligase enzyme (E3). E3 ubiquitin ligase enzymes are responsible for 
substrate specificity, making them more desirable targets for drug targeting than are the 
E1-activating and E2-conjugating enzymes. Ubiquitination is a reversible process regu-
lated by deubiquitinases (DUBs), proteases that remove ubiquitin chains to modulate its 
biological functions [4].

E3 ubiquitin ligases are crucial for substrate specificity in the ubiquitination system. 
The human genome encodes over 600 E3 ubiquitin ligases but only two E1 ubiquitin-
activating enzymes [5] and approximately 32 E2 ubiquitin-conjugating enzymes [6]. 
E3 ubiquitin ligases have been classified according to their catalytic domain and the 
mechanisms they use to transfer ubiquitin to target proteins (Fig. 1A). The classification 
includes really interesting new gene (RING)-type domain proteins and homologous to 
E6-associated protein carboxyl terminus (HECT) domain proteins [7]. Other less fre-
quent types have also been described, including U-box domain proteins [8] and RBR 
(RING-between-RING) domain proteins [9]. RING domain E3 ubiquitin ligases are the 
most abundant with an estimated of 270 genes in humans [10]. RING domain ubiquitin 
ligases facilitate the direct transfer of ubiquitin from the E2 enzyme to the protein sub-
strate via their RING domain [11] and can function as single-chain enzymes, homodi-
mers, heterodimers, or as part of multisubunit complexes. Some RING ligases, including 
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the casitas B-lineage lymphoma (Cbl) family and Hakai, recognize the specific substrates 
in a phospho-tyrosine (pTyr)-dependent manner. The Cbl family consists of three mem-
bers in mammals, Cbl (also known as c-Cbl), Cbl-b, and Cbl-c (also known as Cbl-3) 
[12].

Hakai is a 491 amino acid RING-type domain E3 ubiquitin ligase and resembles the 
Cbl family, with a similar structure to that of c-Cbl [1]. However, Hakai is not a typi-
cal Cbl protein. Similar to the Cbl family members, Hakai contains a phosphotyrosine-
binding domain (PTB), a RING finder domain, and a proline-rich domain (Fig.  1B). 

Fig. 1 A Classification of E3 ubiquitin ligases by domain architecture. The substrate protein (green) and E2 
conjugating enzyme (red) may bind different regions of the enzyme. In HECT and RBR E3 ligases, ubiquitin 
is transferred to the E3 enzyme, while RING and U‑Box ligases directly transfer ubiquitin to the substrate. B 
The Cbl family of RING E3 ubiquitin ligases. The N‑terminal tyrosine kinase binding (TKB) domain contains 
four‑helix bundles (4H), an EF hand (EF), and a Src homology (SH2) domain. This is followed by the RING 
domain, responsible for E3 activity, and the proline‑rich domain for substrate recognition. The C‑terminal 
ubiquitin‑associated domain (UAB) facilitates ubiquitin binding and dimerization. Cbl‑c lacks both the 
proline‑rich and UAB domains, whereas c‑Cbl and Cbl‑b contain all domains. Hakai has an inverted domain 
order, and its RING domain is near the N‑terminus, followed by the PTB domain and lacking the UAB domain. 
ZNF645 shares high homology and similar domain architecture with Hakai but is shorter. Both form an 
atypical pocket called the Hakai phospho‑tyrosine binding (HYB) domain upon homodimerization, involving 
the RING and PTB domains. The HYB domain in Hakai dictates substrate specificity and is a potential drug 
target. C Comparison of Hakai HYB domain dimer PDBID 3VK6 [13, 111] and c‑Cbl PDBID 2Y1M [112, 113] 
structures. The Hakai HYB domain dimer structure, with zinc coordination from both monomers (green and 
pink), is unique to Hakai and absent in other RING E3 ligases. D Structure alignment of HYB domain (orange) 
and c‑Cbl (blue). The overlapping region corresponds to the RING domains (left). The structures were 
retrieved from the protein databank [114], (http:// www. rcsb. org/) and were created with BioRender.com

http://www.rcsb.org/
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Nevertheless, the distribution of Hakai domains along the protein sequence is different 
from the other Cbl family members. Indeed, the RING domain and the PTB domain 
are in reverse linear order, and the proteins have no sequence similarities outside these 
domains (Fig.  1B). Furthermore, the binding mechanism to tyrosine-phosphorylated 
substrates significantly differs between Hakai and c-Cbl. The protein Hakai contains two 
monomers arranged in an antiparallel manner [13]. Each monomer comprises an N-ter-
minal RING domain and a C-terminal PTB domain that incorporates a zinc coordina-
tion motif, which is crucial for dimerization [13]. Hakai dimerization is formed through 
the binding of pTyr residues of the Hakai monomers in a zinc-coordinated manner, 
allowing the formation of a phosphotyrosine-binding pocket, named Hakai-phospho-
tyrosine-binding (HYB) domain [13, 14], which recognizes specific tyrosine-phospho-
rylated substrates. This binding pocket structurally differs from the binding domains of 
other RING family E3 ubiquitin ligases (Fig.  1C-D). Unlike other E3 ubiquitin ligases 
that do act as dimers, Hakai dimerization does not occur through RING domain asso-
ciation, and instead, it is mediated by its pTyr peptide [14]. So far, in addition to Hakai 
(CBLL1 gene), the HYB domain has been found only in ZNF645 (CBLL2 gene), exclu-
sively expressed in normal human testicular tissue [15].

E-cadherin is the most established component of the adherent junctions at cell‒cell 
contacts. The loss of E-cadherin induced by Hakai, upon phosphorylation by the pro-
tein kinase Src, leads to its endocytosis, disrupting cell‒cell contacts and, subsequently, 
inducing the epithelial-to-mesenchymal (EMT) transition process, a critical process 
involved in cell invasion, tumor progression, and metastasis [16, 17]. Moreover, Hakai 
expression is increased in several types of cancer tissues, including colon [18–20], gas-
tric [18], and non‐small cell lung cancer (NSCLC) tissues [21] compared with adjacent 
nontumor tissues. Considering Hakai mechanism of action, its higher expression in can-
cer and the structurally unique HYB domain, it has been proposed as a promising thera-
peutic target for cancer treatment. The fact that the dimerization is essential for Hakai 
activity as an E3 ubiquitin ligase suggests that allosteric inhibitors targeting the HYB 
domain have potential therapeutic implications for tumor treatment [14]. Furthermore, 
the involvement of Hakai in the RNA metabolism has been recently identified, opening a 
new and critical area of research, which will be explored in depth in this review.

Role of Hakai as an E3 ubiquitin ligase of E‑cadherin

E‑cadherin, the first reported substrate for Hakai

E-cadherin is a key component of adherens junctions, forming calcium-mediated inter-
actions between two E-cadherin extracellular domains at cell‒cell contacts, with a cyto-
plasmic domain that interacts with the cell actin cytoskeleton through proteins such 
as p120-catenin, β-catenin, and α-catenin [22]. Epithelial monolayers are dynamic, and 
the endosomal recycling of E-cadherin in the plasma membrane plays an important 
role in this mechanism of cell contact remodeling [23]. Hakai recognizes the cytoplas-
mic domain of E-cadherin dependent of Src phosphorylation. The cytoplasmic domain 
of E-cadherin contains two domains known as cadherin homology 2 and 3 (CH2 and 
CH3). The CH2 domain of E-cadherin includes three tyrosine residues, two of which 
are specific of this protein and not shared with other cadherins, such as neural cadherin 
(N-cadherin) and OB-cadherin. The interaction between E-cadherin and Hakai through 



Page 5 of 23Escuder‑Rodríguez et al. Cellular & Molecular Biology Letters            (2025) 30:9  

these two specific residues (pTyr755 and pTyr756 in mice and pTyr753 and pTyr754 in 
humans) demonstrate the specificity of Hakai to interact with E-cadherin but not to 
other cadherins or receptor tyrosine kinases [1]. Furthermore, the degradation of E-cad-
herin by Hakai-mediated ubiquitination is via the lysosome, involving the action of Rab5 
and Rab7 GTPases, while the recycling of E-cadherin through Rab11-containing recy-
cling endosomes (RE) to the cell membrane is reduced [23, 24].

E-cadherin loss at cell–cell contacts is probably the best-established hallmark of 
EMT. The EMT process is characterized by the acquisition of mesenchymal character-
istics and the loss of epithelial markers, including E-cadherin. In fact, upregulation of 
N-cadherin (a mesenchymal marker) and downregulation of E-cadherin are hallmarks 
of EMT, known as the cadherin switch. The cadherin switch is associated with increased 
migration and invasion in cancers. E-cadherin also regulates the inhibition of cell pro-
liferation via cell–cell contact inhibition, regulating the expression of receptor tyrosine 
kinases and tyrosine kinase Src [25]. The extracellular domain of E-cadherin has also 
been shown to interact with receptor tyrosine kinases such as epithelial growth factor 
receptor (EGFR) suppressing its proliferation-stimulating signaling [26].

Molecular mechanisms involved in the regulation of E‑cadherin by Hakai

Owing to the important role of E-cadherin at cell‒cell contacts, controlling the expres-
sion of its encoding gene, CDH1, has also been reported to have important implications 
for both development and cancer. The main regulators of CDH1 are the transcription 
factors ZEB1, ZEB2, SNAIL, SLUG, and TWIST [26, 27]. However, in recent years, the 
posttranslational control of E-cadherin by ubiquitination has been highlighted. In fact, it 
is proposed that the loss of E-cadherin at the first stages of EMT is governed mainly by 
posttranslational mechanisms that include ubiquitination, endocytosis, and lysosomal 
degradation, whereas the transcriptional downregulation of CDH1 plays a role in the 
later stages of EMT [28]. This suggests that targeting this post-translational event may 
offer a therapeutic window to prevent or reverse EMT in cancer metastasis before more 
permanent transcriptional changes occur. With respect to the control of Hakai expres-
sion, transforming growth factor beta 1 (TGFB1) induces the transcription of CBLL1. 
Moreover, hyperactivation of Raf, which indirectly enhances E-cadherin tyrosine phos-
phorylation via the Raf/MAPK pathway, cooperates with an increased ubiquitination 
of E-cadherin through TGFB1 induction for the degradation of E-cadherin in the early 
stages of EMT [28].

When E-cadherin is not phosphorylated by Src, Numb protein binds through its PTB 
domain to a conserved amino acid region, promoting E-cadherin localization in epithe-
lial cells to its lateral domain in cell‒cell contacts. Upon phosphorylation by Src, Hakai 
binds to E-cadherin in the same conserved region and promotes ubiquitination and 
endocytosis [29]. Although the specific ubiquitin chain linked has not yet been char-
acterized, K48 and K63 are the lysine residues on ubiquitin that can be linked together 
to form polyubiquitin chains. Whether an ubiquitinated protein is directed toward 
proteasomal degradation or sent to the endosomal–lysosomal pathway depends on 
the specificity of these proteins for K48- or K63-ubiquitin chains [30]. K48 is the most 
abundant ubiquitin linkage and targets its substrates for proteasomal degradation [31]. 
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Ubiquitinated E-cadherin degradation is a two-step process in which a 90 kDa fragment 
is first formed by partial degradation in the proteasome [32], after which it is completely 
degraded into lysosomes [23].

Finally, deubiquitination is also important in the regulation of E-cadherin stability 
as a counter mechanism for Hakai ubiquitination. The ubiquitin-specific protease 47 
(USP47), a DUB enzyme, is transported to adherens junctions by kinesin family member 
C3 (KIFC3), reversing the ubiquitination of E-cadherin by Hakai [32]. KIFC3 is a minus-
end-director motor that migrates to adherens junctions in a calmodulin-regulated spec-
trin-associated protein 3 (CAMSAP3)-dependent manner. Moreover, the localization 
of CAMSAP3 to adherens junctions depends on the complex of E-cadherin with p120-
catenin and pleckstin homology domain-containing family A member 7 (PLEKHA7). 
Thus, the stabilizing role of p120-catenin on E-cadherin might also be explained by its 
involvement in directing the KIFC3–USP47 complex to adheren junctions [32]. Loss of 
either KIFC3 or USP47 results on increased ubiquitination of E-cadherin and its target-
ing for proteasomal degradation [32].

Ajuba, cortactin, and DOK1 as novel Hakai substrates

Identifying novel substrates for E3 ubiquitin ligases is challenging due to the rapid 
turnover of E3–substrate interactions, their typically low-affinity binding, and the often 
low abundance of substrates in the cell. However, novel Hakai substrates were discov-
ered involved in other pathways. Hakai interacts with Ajuba through its lin-11, Isl-1, 
mec-3 (LIM) domains. Ajuba is a member of the LIM domain-containing protein fam-
ily (group 3), which has multiple biological implications, including the development 
of epidermal tissue and oncogenesis [33]. Moreover, it is involved in cell proliferation 
of skin stem cells through the Hippo/Wnt signaling pathway, in cell cycle progression 
through Aurora-A, Aurora-B, and CDK1 and in epidermal differentiation through 
Notch signaling and the stabilization of catenins and actin [33]. Ajuba and Hakai interact 
through the HYB domain of Hakai and the LIM domain of Ajuba, and both colocalize 
in the cytoplasm. Hakai promotes Ajuba degradation independent of the E3 ubiquitin 
ligase activity. Instead, Hakai causes neddylation of Ajuba, which leads to its degrada-
tion, requiring the HYB domain for this activity [34]. This dual role of Hakai acting as 
both, ubiquitin and ubiquitin-like ligase, was also reported to other members of the Cbl 
family. For example, a dual role as an E3 ubiquitin ligase and as an E3 NEDD8-ligase 
has been reported for c-Cbl. The overexpression of c-Cbl stabilizes the TGF-β type II 
receptor TβR-II via neddylation, antagonizing its ubiquitination, which instead tar-
gets it for degradation [35]. Functionally, Ajuba depletion has important consequences 
for malignant transformation. In hepatocellular carcinoma (HCC) cells, Ajuba func-
tions as a tumor suppressor [34], negatively regulating the Wnt signaling pathway. At 
the molecular level, depletion of Ajuba leads to E-cadherin loss, β-catenin translocation 
from cell‒cell contacts to the cytoplasm and the nucleus, and increased cyclin D1 and 
yes-associated protein (YAP) levels [34]. The expression of the YAP target gene CYR61 
is increased in Ajuba-depleted HCC cells. On the other hand, overexpression of Ajuba 
decreases the invasive and migratory capabilities of HCC cells. Although the kinase 
GSK-3β regulates β-catenin activity through the Wnt/β-catenin pathway, its depletion 
in Ajuba-depleted HCC does not affect β-catenin translocation or cyclin D1 expression 
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levels [34]. β-catenin translocation is dependent on its interaction with Hakai through 
the HYB domain, and cells overexpressing Hakai have increased cyclin D1 protein lev-
els. The overexpression of Hakai in HCC results in increased invasion, colony formation 
and spheroid formation, effects that are reversed by the knockdown of β-catenin. On the 
other hand, depletion of Hakai decreases the invasion and colony formation ability of 
HCC. Although Hakai contributes to the degradation of Ajuba and Ajuba is linked to the 
Wnt pathway, the molecular mechanism and functional role of Hakai in Wnt signaling 
remains to be further explored.

The HYB domain of Hakai has other interacting proteins described in a Src phos-
phorylation-dependent manner, including cortactin and docking protein 1 (DOK1). 
However, although these interactions have been biochemically confirmed the activity-
dependent mediation and its functional consequences are still unknown [36]. Both 
E-cadherin and cortactin are downregulated in stably Hakai-expressing cells [37]. Cort-
actin is an F-actin binding protein that is phosphorylated by tyrosine kinases (including 
Src), and its dephosphorylation is a key step in TGFB1-induced EMT [38]. Moreover, 
downregulation of cortactin enhances the ability of TGFB1 to induce EMT (for example, 
downregulating E-cadherin) and promote cell migration [38]. On the other hand, DOK1 
is an adapter protein that inhibits growth factor and immune regulatory pathways, but 
it is often downregulated in cancer. Its localization in the cell determines its function, 
as cytoplasmic DOK1 activates peroxisomes. At present, the interactions described of 
Hakai with Cortactin and DOK 1 still await further study to determine whether ubiquit-
ination takes place and the biological implications of these interactions.

Role of Hakai in cellular signaling and regulation mechanisms

Implication of Hakai in several signaling pathways

Rack1 is an inhibitor of Src phosphorylation activity and its expression limits Src phos-
phorylation of E-cadherin, p120-catenin, and β-catenin, localizing them at cell‒cell 
contacts. As Src phosphorylation is required for Hakai binding and ubiquitination of 
E-cadherin, Rack1 prevents the lysosomal degradation of E-cadherin [39]. The tyros-
ine kinase Fyn, a member of the Src protein family, mediates the downregulation of 
E-cadherin induced by TGFB1. This signaling pathway is dependent on p38 kinase and 
SNAIL, which is an upregulated E-box transcriptional repressor [40]. In addition, Fyn is 
involved in the downregulation of E-cadherin by interferon gamma (IFNγ), a proinflam-
matory cytokine [41]. IFNγ induces the internalization of E-cadherin in a Fyn-depend-
ent manner. The ubiquitination of E-cadherin by Hakai is also increased by IFNγ, leading 
to its degradation in the proteasome [41]. Given that proinflammatory cytokines, such 
as interferons (IFNγ), can enhance the immune system’s ability to recognize and kill 
cancer cells by activating cytotoxic T cells and natural killer (NK) cells, this opens a 
new important field of investigation regarding the potential role of Hakai in the tumor 
microenvironment.

On the other hand, the Cdc42 tyrosine kinase contributes to breast cancer inva-
sion and metastasis through the EGFR signaling pathway. Cdc42 inhibits c-Cbl ubiq-
uitination of EGFR, limiting its degradation [42]. The increased protein level of EGFR 
decreases E-cadherin levels at adherens junctions, trafficking E-cadherin through 
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Src- and Hakai-mediated phosphorylation and ubiquitination for lysosomal degradation, 
ultimately resulting in EMT [42].

The juxtamembrane domain (JMD) at the cytoplasmic domain of E-cadherin can 
also bind the protein p120-catenin [43]. This interaction competes with Hakai bind-
ing to E-cadherin, whereas the ubiquitination of E-cadherin inhibits its binding to 
p120-catenin [43]. On the other hand, E-cadherin mutants in the p120-catenin binding 
domain that are not able to bind p120-catenin have increased interactions with Hakai 
[44]. Another kinase, spleen tyrosine kinase (SYK), is also involved in the phosphoryla-
tion of E-cadherin [45]. The phosphorylation of E-cadherin by SYK also phosphorylates 
the key tyrosine residues involved in the interaction of Hakai with E-cadherin, but SYK 
and Hakai do not interact; instead, the phosphorylation of E-cadherin by SYK enhances 
its interaction at adherens junctions with p120-catenin, also inhibiting cell migration 
and tumor invasion [45].

Regulation of δ‑catenin by Hakai

Hakai interacts with Src via a mechanism that regulates the stability of δ-catenin. 
δ-Catenin is a protein that promotes E-cadherin internalization, releasing β-catenin, 
which is trafficked to the nucleus, where it mediates oncogenic signaling [46]. δ-Catenin 
expression levels are correlated with Hakai expression levels in prostate carcinoma cell 
lines and in kidney cell lines that lack activated Src [47]. However, Hakai and δ-catenin 
do not physically interact, and they do not colocalize in cells; δ-catenin is associated 
mainly with the plasma membrane, where Hakai is rarely present [47]. Overexpres-
sion of Hakai increases δ-catenin stability. δ-Catenin gain by Hakai overexpression is 
reversed in cells transfected with Src siRNA, indicating the need for tyrosine phospho-
rylation of δ-catenin by Src for the stabilizing effect of Hakai on δ-catenin [47]. Never-
theless, this effect is independent of Hakai E3-ubiquitin ligase activity (as confirmed by 
Hakai mutants that lack the domains needed for this activity). Mechanistically, GSK-3β 
phosphorylates δ-catenin, resulting in its ubiquitination and ultimately its proteolysis in 
the proteasome, whereas the phosphorylation of δ-catenin by Src in turn enhances its 
stability by decreasing its affinity to GSK-3β, through a Hakai-mediated mechanism. In 
fact, the stabilization of δ-catenin by Hakai is a consequence of the stabilization of Src by 
Hakai. Hakai overexpression results in an increased stability of Src [47]. The mechanism 
by which Hakai stabilizes Src remains to be fully elucidated.

Regulation of Hakai by Hsp90

Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a crucial role in sta-
bilizing and regulating various client proteins involved in different cellular processes, 
including cancer [48, 49]. Hakai is regulated by Hsp90 and has been described as a novel 
client protein for Hsp90. An interaction complex between Hsp90, Hakai, and annexin 
A2, a calcium-binding protein with roles in membrane and vesicle trafficking, has been 
reported [49]. Hakai overexpression reduces annexin A2 expression but does not affect 
Hsp90 expression, whereas silencing Hakai increases annexin A2 expression but has no 
effect on Hsp90 expression. Inhibition of Hsp90 activity prevents the formation of the 
complex and decreases Hakai expression while increasing annexin A2 expression [49]. 
A proposed model for the interaction complex states that Hsp90 stabilizes Hakai, which 
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similarly to its role in E-cadherin degradation, is also responsible for annexin A2 ubiquit-
ination, which leads to its degradation. When Hsp90 is inhibited, Hakai is then degraded 
through the lysosome, increasing annexin A2 expression [49]. Moreover, geldanamycin-
induced Hakai degradation is linked to increased E-cadherin and annexin A2 expression. 
Additionally, geldanamycin reduces cell motility partly by affecting Hakai expression. 
These findings identify Hakai as a novel Hsp90 client protein and suggest that Hsp90 
inhibitors could be explored for colorectal cancer therapy through their action on Hakai. 
Later, the alkaloid daurisoline, derived from the plant Menispermum dauricum, was 
shown to target Hsp90, resulting in an increased degradation of Hakai and decreased 
ubiquitination and degradation of E-cadherin, both in vitro and in vivo, with important 
implications for tumor growth, EMT markers, and angiogenesis [50].

Hakai as a component of the nuclear  m6A methyltransferase complex

Hakai is involved in several other processes independent of its canonical role related 
to its E3 ubiquitin ligase activity [51]. This was first evidenced by Hakai localization in 
the nucleus in several cell lines and in cells that do not express E-cadherin, suggesting 
additional roles independent of its action on E-cadherin [18]. The first reported role for 
Hakai in the nucleus was its interaction with the nuclear protein polypyrimidine tract-
binding protein-associated splicing factor (PSF), an RNA-binding protein [18]. This 
protein is involved in transcription, DNA binding, unwinding and repair, pre-mRNA 
splicing, and RNA editing [52]. Both Hakai and PSF colocalize in the nucleus, and 
their interaction mediates the binding of PSF to its target mRNAs. Hakai overexpres-
sion enhances PSF binding to mRNAs encoding cancer-related proteins, whereas Hakai 
knockdown diminishes the RNA-binding capacity of PSF [18]. Nevertheless, there is no 
evidence that Hakai is directly responsible for the ubiquitination of PSF [53].

Since then, Hakai has emerged as a component of the  m6A methyltransferase complex 
in the nucleus. N6-methyladenosine  (m6A) is the most common epigenetic modifica-
tion of mRNAs in eukaryotes, and it is involved in several cellular processes, including 
nuclear export, cell cycle regulation, splicing regulation, and stability of mRNAs, among 
others [54]. In plants and metazoans, it is linked to early pattern formation, whereas 
in mammals, including humans, it is also associated with several diseases. For exam-
ple, it is involved in tumor progression and metastasis [55, 56].  m6A modification of 
mRNAs involves complex interactions among writers, readers, and erasers. Writers are 
the enzymes responsible for adding  m6A modifications to mRNA transcripts. The main 
writer complex is known as the  m6A methyltransferase complex. Readers are proteins 
that recognize and bind to  m6A-modified mRNAs, and erasers are enzymes responsi-
ble for removing  m6A modifications from mRNAs [57]. The  m6A methylosome writer 
complex [58] consists of an enzymatic core of two methyltransferases or  m6A METLL 
complex (MAC), namely, methyltransferase-like protein 3 (METTL3) and methyltrans-
ferase-like protein 14 (METTL14) and associated auxiliary proteins or  m6A–METLL-
associated complex (MACOM), including Wilm’s tumor 1-associated protein (WTAP), 
virilizer-like  m6A methyltransferase-associated protein (VIRMA/KIA1429), RNA-bind-
ing protein 15 (RBM15), and zinc finger CCCH-type containing 13 (ZC3H13), BCLAF1, 
THRAP3, and Hakai. The MAC is a heterodimer consisting of METLL3, which has 
methyltransferase activity, and METLL14, which supports the interactions with RNA 
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targets. WTAP stabilizes the interaction of the MAC and recruits the heterodimer into 
nuclear speckles, where several proteins involved in gene expression and post-transcrip-
tional modifications are found and where the  m6A modification takes place [54]. WTAP 
is an essential protein for early embryo development in mice and is involved in cell cycle 
progression and RNA processing. Hakai interacts with WTAP, and the interaction is 
dependent on Hakai’s RING finger domain [54].

Hakai was first revealed to be part of the  m6A writer complex in the plant Arabidop-
sis thaliana and was shown to interact with MTB (the ortholog in plants to METLL14) 
and to be necessary for mRNA methylation in plants [59]. Mutants of Hakai and other 
members of the  m6A writer complex in A. thaliana revealed the role in plants of this 
modification in the response to environmental stress such as the salt stress response [60] 
and the defence response to pathogens [61], among others. Hakai is also a confirmed 
member of the complex in the fly Drosophila melanogaster [62] on which a stable com-
plex is formed with Fl(2)d (WTAP in humans), virilizer (VIRMA), Flacc (ZC3H13), and 
Hakai. This complex is thought to act as a platform to connect the other members of 
the complex and integrate molecular signals to regulate  m6A modification [62]. Indeed, 
depletion of Hakai leads to reduced protein levels of the other members of this com-
plex and impairs  m6A methylation [62]. Hakai interacts with Virilizer through its N-ter-
minal domains, which has also been confirmed in humans (where it interacts with its 
homolog VIRMA). VIRMA acts as a scaffold protein to allow the interaction of Hakai 
with WTAP. However, despite dimerization and the RING domain being important for 
the stabilization of members of the MACOM, Hakai is not reported to possess ubiquitin 
ligase activity toward them in Drosophila [58, 62]. Two zinc finger proteins interact with 
Hakai in the  m6A complex of Arabidopsis, namely HIZ1 and HIZ2 [63]. HIZ1 expression 
is regulated by Hakai but not at a post-translational level. In addition, Hakai is neces-
sary for HIZ1 interaction with MTA (METLL3 in humans) but not for HIZ2 interaction. 
HIZ2 is proposed as the plant equivalent of ZC3H13 [63]. VIRMA has been proposed 
as a scaffold protein for WTAP/Hakai/ZC3H13 to form a pocket for writers METTL3/
METTL14, which is necessary for guiding  m6A modification in the 3′ untranslated 
region (UTR) and near stop codons and the 3′UTR of mRNA [64]. Indeed, VIRMA 
associates with METLL3 and is required for  m6A writer activity [65]. On the other hand, 
ZC3H13 is involved in the correct localization of the WTAP/Hakai/VIRMA/ZC3H13 
complex in the nucleus, whereas the depletion of ZC3H13 leads to decreased levels of 
VIRMA, WTAP, and Hakai in the nucleus and the translocation of the complex to the 
cytoplasm [66]. In humans, VIRMA, Hakai and ZC3H13 are critical for  m6A methyla-
tion, as their silencing in vitro leads to significant decreases in the  m6A levels of poly-
adenylated mRNAs [64]. An active chemical compound called ginsenoside Rh2, derived 
from ginseng (Panax ginseng), has been shown to reduce  m6A methylation levels in sev-
eral cancer cell lines. Ginsenoside Rh2 has tumor-suppressive activity and downregu-
lates the mRNA levels of Kinesin family member 26B (KIF26B), a kinesin motor protein 
[67]. At the molecular level, KIF26B interacts with ZC3H13 and Hakai in the cytoplasm, 
increasing the translocation of these proteins to the nucleus. The HYB domain of Hakai 
is necessary for this interaction [67]. Since  m6A RNA methylation takes place in the 
nucleus, KIF26B might enhance  m6A modification by promoting the nuclear localization 
of ZC3H13 and Hakai. Although it is clear that Hakai belongs to  m6A complex, further 
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studies are essential to comprehensively elucidate the role of Hakai in the  m6A complex, 
particularly in humans. Although the RING and HYB domains and dimerization are 
crucial for Hakai’s stabilization of the complex and its “bridging” function among com-
plex members, the exact contribution of the E3 ubiquitin ligase activity of Hakai to its 
interactions with the  m6A writer complex and the resulting functional implications for 
 m6A regulation remain unclear.

Implications of Hakai in cellular processes and pathology

Hakai role in cell proliferation

So far, Hakai has been implicated primarily in the process of EMT through its action on 
E-cadherin. However, it is also reported to be involved in cell proliferation via a mecha-
nism independent of E-cadherin expression [18]. Indeed, cells overexpressing Hakai have 
been found to proliferate at a higher rate than parental cells. This effect was observed 
even in cells that do not express E-cadherin, such as the HEK293 cell line. The RING-
finger domain of Hakai is necessary for this increase in cell proliferation. On the other 
hand, Hakai-knockdown cells are less proliferative and have lower expression of the cell 
cycle regulator cyclin D1. In vivo experiments have confirmed that Hakai overexpression 
enhances tumor formation and proliferation and promotes both invasion and metasta-
sis [19]. Moreover, enhanced Hakai expression is also observed in proliferative tissues 
such as the endometrium and the lymph nodes, which do not express E-cadherin. The 
enhanced proliferative effects of Hakai are associated with its oncogenic potential. Hakai 
also has increased expression in colon adenocarcinoma, gastric adenocarcinoma, and 
non‐small lung cancer tissues compared with adjacent nontumor tissues [18]. The pre-
cise mechanism by which Hakai may influence proliferation is still unclear and whether 
the HYB domain and the E3 ligase activity are involved remain unknown. However, it 
was reported that the microRNA (miR)-203 downregulates Hakai expression in epithe-
lial cells [20]. By targeting Hakai with miR-203, an antiproliferative effect is observed 
in epithelial cells and nonepithelial cells, suggesting that the antiproliferative effect of 
miR-203 is independent of E-cadherin expression [20]. Moreover, it was shown that 
Hakai is overexpressed in colon adenocarcinomas, whereas miR-203 is reduced in colon 
tumors compared with normal colon tissue [20]. Finally, a recent study identified Hakai 
as an interactor of the transcription factor N-Myc through mass spectrometry analysis 
in HEK293 embryonic cells [68]. This interaction was further validated by immunopre-
cipitation. In Wilm’s tumor, the most common type of pediatric renal cancer, a positive 
correlation between the expression of MYCN and CBLL1 mRNA was found [68]. Down-
stream genes regulated by N-Myc are involved cell proliferation and control of the cell 
cycle. The significance of the interaction of Hakai with N-Myc and its possible role in 
tumor cell proliferation require further research.

Hakai role in stemness

Increasing evidence shows the link between EMT and the ubiquitination process in the 
development and the maintenance of cancer stem cells (CSCs) [69, 70], where E3 ubiq-
uitin ligases play a fundamental role [71]. Other E3 ubiquitin ligases have been reported 
to be involved in EMT and CSCs. For instance, downregulation of the FBXW7 E3 
ligase induces the acquisition of CSC properties and enhances EMT and metastasis in 
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colorectal cancer (CRC) cells [72], NEDD4 is involved in the maintenance of CSC prop-
erties in breast cancer [73], and the pharmacological inactivation of Skp2 could reduce 
the self-renewal capability of CSCs [74]. Given the involvement of Hakai in EMT, the 
possible role of Hakai in the acquisition of stem properties has gained importance. In 
a tumorsphere in  vitro model, the silencing of Hakai with a specific shRNA-CBLL1 
resulted in reduced tumorsphere number and sizes, together with the downregulation of 
Lgr5, probably the best established colon cancer stem cell marker, and Nanog and Klf4, 
universal CSC markers, at the protein level [75]. Despite these efforts, the specific mech-
anism by which Hakai is involved in cancer stem cells still remains unknown. On the 
other hand, the importance of Hakai functions in embryonic development has also been 
reported in D. melanogaster [76]. The Hakai homolog in D. melanogaster conserves the 
RING domain and interacts with the E-cadherin homolog, which is crucial for embry-
onic development [76]. The role of Hakai in  m6A methylation has also been linked to 
the embryonic development in A. thaliana studies [77]. Indeed, knockdown of Hakai, 
similar to the knockdown of WTAP, virilizer, and ZC3H13 impairs self-renewal and trig-
gers differentiation in mouse embryonic stem cells [66], further supporting Hakai role 
in stemness. Other developmental studies in vivo models showed that Hakai is essential 
in the early developmental stages of the D. melanogaster life cycle (embryogenesis) [76]. 
In Drosophila, Hakai, and E-cadherin form a complex differently than they do in mam-
mals. Hakai null mutants died at the larval stage, but this phenomenon was reversed 
by the HA-tagged Hakai construct. While zygotic Hakai was not required for cell pro-
liferation and differentiation in the wing disc epithelium, maternal Hakai mutants pre-
sented defects in epithelial integrity, including stochastic E-cadherin loss, reduced αKC 
levels, and issues related to cell specification and migration. However, E-cadherin levels 
did not increase. Thus, Hakai may regulate other proteins essential for early embryonic 
morphogenesis in Drosophila. The Hakai homolog in Drosophila is expressed in the 
cytoplasm of cells, which points to an indirect interaction through another molecule, 
unlike what happens in mammalian Hakai and E-cadherin, which directly interact [76]. 
Moreover, Hakai overexpression in D. melanogaster did not decrease E-cadherin levels 
at cell‒cell contacts, suggesting a different role for this interaction [76]. Thus, Drosoph-
ila Hakai may have different interacting partners that mediate cell adhesion and migra-
tion, which are essential for early embryonic morphogenesis [76]. Finally, an important 
study has revealed that E-cadherin ubiquitination by Hakai might play a major role in 
human embryonic stem cells [78]. Consistent with its role, Hakai knockdown increased 
E-cadherin and β-catenin levels, enhancing morphogen-stimulated mesoderm differ-
entiation in human embryonic stem cells cultured on stiff gels. These findings suggest 
that on a stiff substrate, increased Hakai activity promotes E-cadherin internalization, 
destabilizes adherens junctions and releases β-catenin into the cytoplasm, where it is 
quickly degraded in the proteasome, thus reducing its ability to induce mesoderm dif-
ferentiation [78]. Therefore, an increasing body of evidence is beginning to highlight the 
potential role of Hakai in stemness and cancer stem cells; however, further studies are 
essential to determine its impact and implications in human cancer stemness.



Page 13 of 23Escuder‑Rodríguez et al. Cellular & Molecular Biology Letters            (2025) 30:9  

Ta
bl

e 
1 

Bi
oi

nf
or

m
at

ic
 a

na
ly

si
s 

of
  m

6 A
‑r

el
at

ed
 g

en
es

 a
nd

 th
ei

r p
re

di
ct

iv
e 

va
lu

e 
fo

r p
at

ie
nt

 p
ro

gn
os

is

D
is

ea
se

G
en

es
Pu

rp
os

e
C

BL
L1

 e
xp

re
ss

io
n

D
at

ab
as

e
Re

fe
re

n
ce

H
ep

at
oc

el
lu

la
r c

ar
ci

no
m

a
M

ET
TL

3,
 W

TA
P, 

RB
M

15
, R

BM
15

B,
 V

IR
M

A,
 

CB
LL

1,
 M

ET
TL

14
, Z

C3
H

13
Pr

og
no

si
s 

an
d 

tu
m

or
 im

m
un

e 
in

fil
tr

a‑
tio

n
U

pr
eg

ul
at

ed
TC

G
A

 a
nd

 G
EO

[1
01

]

Lu
ng

 c
an

ce
r

ZC
3H

13
, C

BL
L1

, E
LA

VL
1,

 Y
TH

D
F1

Pr
og

no
si

s, 
tu

m
or

 im
m

un
e 

in
fil

tr
at

io
n 

an
d 

dr
ug

 re
sp

on
se

D
ow

nr
eg

ul
at

ed
TC

G
A

 a
nd

 G
EO

[1
02

]

Lu
ng

 a
de

no
ca

rc
in

om
a

M
ET

TL
3,

 K
IA

A1
42

9,
 H

N
RN

PC
, Y

TH
D

F1
, 

YT
H

D
F2

, I
G

F2
BP

1,
 IG

F2
BP

2,
 IG

FB
P3

, F
M

R1
, 

LR
PP

RC
, H

N
RN

PA
2B

1

Pr
og

no
si

s, 
m

ol
ec

ul
ar

 s
ub

ty
pe

 c
lu

st
er

in
g

N
ot

 d
iff

er
en

tia
lly

 e
xp

re
ss

ed
 a

nd
 c

or
‑

re
la

te
s 

to
 L

A
G

3 
(ly

m
ph

oc
yt

e 
ac

tiv
at

ed
 

ge
ne

 3
) t

ha
t i

s 
in

vo
lv

ed
 in

 T
re

g 
su

pp
re

s‑
si

ve
 fu

nc
tio

n

TC
G

A
 

[8
5]

Lu
ng

 a
de

no
ca

rc
in

om
a

H
N

RN
PA

2B
1,

 H
N

RN
PC

, I
G

F2
BP

2,
 IG

F2
BP

3,
 

LR
PP

RC
, R

M
B1

5,
 W

TA
P, 

ZC
3H

13
Pr

og
no

si
s, 

m
ol

ec
ul

ar
 s

ub
ty

pe
 c

lu
st

er
in

g
N

ot
 d

iff
er

en
tia

lly
 e

xp
re

ss
ed

 a
nd

 d
if‑

fe
re

nt
ia

lly
 e

xp
re

ss
ed

 in
 d

iff
er

en
t t

um
or

 
m

ol
ec

ul
ar

 c
lu

st
er

s

G
EO

, T
CG

A
 

[1
03

]

Ea
rly

‑s
ta

ge
 lu

ng
 a

de
no

ca
rc

in
om

a
LR

IG
1,

 C
TS

V,
 K

IF
20

A,
 A

TP
13

A3
, T

M
PR

SS
2

Pr
og

no
si

s, 
m

ol
ec

ul
ar

 s
ub

ty
pe

 c
lu

st
er

‑
in

g,
 im

m
un

e 
in

fil
tr

at
io

n
N

ot
 d

iff
er

en
tia

lly
 e

xp
re

ss
ed

 a
nd

 
up

re
gu

la
te

d 
in

  C
D

4+
 T

 c
el

ls
 a

nd
 re

gu
la

‑
to

ry
 T

 c
el

ls

TC
G

A
, G

EO
, s

in
gl

e‑
ce

ll 
tr

an
sc

rip
to

m
e 

da
ta

ba
se

 
[1

04
]

[1
05

]

Es
op

ha
ge

al
 c

an
ce

r
H

N
RN

PC
, Y

TH
D

C2
, W

TA
P, 

VI
RM

A,
 IG

F2
BP

3,
 

H
N

RN
PA

2B
1

Pr
og

no
si

s, 
im

m
un

e 
in

fil
tr

at
io

n
U

pr
eg

ul
at

ed
TC

G
A

 
[1

06
]

Ce
rv

ic
al

 C
an

ce
r

W
TA

P, 
RB

M
15

, C
BL

L1
, Y

TH
D

C2
D

ia
gn

os
tic

D
ow

nr
eg

ul
at

ed
G

EO
 a

nd
 m

6a
2t

ar
ge

t
[1

07
]

Pr
os

ta
te

 c
an

ce
r

H
N

RN
PA

2B
1,

 C
BL

L1
, F

TO
, Y

TH
D

C1
, H

N
RN

P, 
W

TA
P

M
et

hy
la

tio
n 

pr
og

no
si

s 
m

od
el

D
ow

nr
eg

ul
at

ed
TC

G
A

 
[1

08
]

Br
ea

st
 c

an
ce

r
CB

LL
1

Pr
og

no
st

ic
U

pr
eg

ul
at

ed
C

lu
st

er
in

g 
ba

se
d 

on
 h

ig
h 

or
 lo

w
 

ex
pr

es
si

on

TC
G

A
 

[9
6]

O
va

ria
n 

ca
nc

er
KI

AA
14

29
, W

TA
P, 

SN
AI

1,
 A

XL
, I

G
F2

BP
1,

 
EL

AV
L1

, C
BL

L1
, C

D
H

2,
 N

AN
O

G
, A

LK
BH

5
Pr

og
no

st
ic

U
pr

eg
ul

at
ed

TC
G

A
, G

TE
x

[1
09

]

O
va

ria
n 

ca
nc

er
CB

LL
1,

 F
TO

, H
N

RN
PC

, M
ET

TL
3,

 M
ET

TL
14

, 
W

TA
P, 

ZC
3H

13
, R

BM
15

B,
 Y

TH
D

C2
Pr

og
no

st
ic

U
pr

eg
ul

at
ed

TC
G

A
, G

TE
x

[1
10

]



Page 14 of 23Escuder‑Rodríguez et al. Cellular & Molecular Biology Letters            (2025) 30:9 

Implications of Hakai in cancer

Numerous bioinformatics studies have highlighted the potential diagnostic and prog-
nostic value of  m6A regulators in various diseases [79–85], including lung, hepatocel-
lular, esophageal, ovarian, prostate, cervical, and breast cancers (summarized in Table 1). 
Despite extensive evidence implicating Hakai in the  m6A writer complex—including 
functional studies across various models and numerous gene signatures of  m6A-related 
genes in different diseases—the specific role of Hakai in  m6A modification remains to be 
fully explored. Here, we present evidence of Hakai’s involvement in various cancer types, 
informed by bioinformatics analyses that, in many cases, require further experimental 
validation.

Colorectal and gastric cancer The role of Hakai in cancer was first reported in gastric and 
CRC tissues, where Hakai is highly expressed compared with adjacent nontransformed 
epithelial tissues. Hakai expression gradually increases in colon carcinoma from stage I to 
stage IV, suggesting its potential use as a biomarker of tumor progression [19]. Later, the 
potential of Hakai for the stratification of patients with CRC was studied on the basis of 
the most widely used molecular classification of CRC: the consensus molecular subtype 
(CMS) classification [86]. This classification system is based on transcriptomics analysis, 
integrates phenotype and clinical characteristics, and is considered the best approach to 
date for cancer molecular classification. This system may be used for future clinical strati-
fication and help in the design of targeted interventions. In the CMS system, CRC can be 
classified as CMS1 (immune subtype, with microsatellite instability and strong immune 
activation), CMS2 (canonical subtype, characterized by epithelial and WNT, MYC and 
EGFR signaling activation), CMS3 (metabolic subtype, epithelial with metabolic dysregu-
lation), or CMS4 (mesenchymal subtype, with activation of TGFB1, stromal invasion and 
angiogenesis). High CBLL1 gene (Hakai protein) expression is specifically associated with 
CMS2 in CRC (the canonical subtype), which is characterized by the activation of WNT, 
MYC, and EGFR signaling and high expression of cyclins [75]. Moreover, high expression 
of Hakai in CMS2 patients was correlated with worse overall survival [75]. Thus, Hakai 
is posed as a novel biomarker of CMS2 CRC, with the potential to stratify patients with 
poor overall survival.

Recent studies have emphasized the importance of the Slit2-Robo1 signaling in 
migration, invasion, and tumor metastasis. Both Slit2 and Robo1 are overexpressed 
in CRC [87] and their expression is associated with an increased risk of metastasis 
and poorer overall survival in patients [87]. Slit2 is secreted by solid tumors and 
binds to plasma-membrane-bound Robo1 expressed by colorectal epithelial carci-
noma cells. Slit-Robo signaling recruits Hakai to E-cadherin, causing its ubiquitina-
tion and lysosomal degradation, thus playing a role in the malignant transformation 
of these tumors [87]. On the other hand, in hereditary diffuse gastric cancer, mis-
sense mutations in E-cadherin are relatively frequent (~30%) and result in decreased 
binding to p120-catenin but increased binding to Hakai, resulting in increased inva-
siveness [44].

Moreover, Hakai expression has also been studied in inflammatory bowel disease 
(IBD), which increases the risk of colorectal cancer (CRC) and includes conditions such 
as ulcerative colitis (UC) and Crohn’s disease (CD). Hakai expression is upregulated in 
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UC and CD biopsies compared with normal tissues, and higher expression was even 
detected in TNM stage IV of CRC tissues. However, these results were not replicated in 
IBD mouse models, suggesting that Hakai regulation in mice does not accurately mimic 
human IBD [88]. Although mouse models have been widely used to study basic patho-
physiological mechanisms, significant controversies exist regarding how well these mod-
els reflect human inflammatory diseases.

Liver cancer The role of Hakai in hepatocellular carcinoma is particularly relevant 
because of its action on the Ajuba protein, which mediates tumor cell proliferation [34, 
89]. As previously mentioned, Ajuba degradation by Hakai has important consequences 
for malignant transformation. Although, so far, little is known regarding the role of Hakai 
in the tumor microenvironment [90], acidic pH growth medium results in the phospho-
rylation of p120-catenin, resulting in its dissociation from E-cadherin, coupled with the 
phosphorylation of E-cadherin by Src in hepatoblastoma cells. This, in turn, allows the 
ubiquitination of E-cadherin by Hakai as well as the degradation, increasing the migra-
tory and invasive capabilities of these cells [90]. Further studies to elucidate the role of 
Hakai in the tumor microenvironment are needed.

Non-small cell lung cancer Another interesting study was focused on the role 
of Hakai in regulating cell growth, invasion, and chemosensitivity to cisplatin in 
non-small cell lung cancer (NSCLC) [91]. The downregulation of Hakai causes the 
upregulation of E-cadherin and the downregulation of N-cadherin expression, limit-
ing cancer cell migration and invasion capabilities [91]. Moreover, it also decreases 
the phosphorylation of AKT (Ser473), which is normally hyperactivated in NSCLC, 
potentially explaining its ability to inhibit growth through AKT signaling [91]. A 
link between AKT phosphorylation and resistance to cisplatin has been previously 
reported, and Hakai silencing can, therefore, sensitize NSCLC to cisplatin [91]. Hakai 
is overexpressed in NSCLC tissue compared with adjacent nontumor tissue, and its 
levels are correlated with tumor size [21]. At the molecular level, both cell cycle regu-
lating proteins cyclin D1 and cyclin-dependent kinase 4 (CDK4) are downregulated in 
Hakai-knockdown cells, increasing the percentage of cells in the G1 phase of cell cycle 
arrest. Hakai knockdown also increases E-cadherin protein levels while decreasing 
the expression of matrix metalloproteinases MMP2 and MMP9, which are key factors 
in lung cancer invasion and metastasis [21]. Importantly, it is well known that EGFR 
mutations are relatively common in lung cancer, and even though EGFR-tyrosine 
kinase inhibitors (TKIs) are effective for patients, the development of resistance is a 
major cause of failure of this treatment [92]. Lung cancer cells with acquired resistance 
have downregulated E-cadherin expression and EMT characteristics. Decreased levels 
of E-cadherin are correlated with decreased expression of programmed death ligand 
1 (PD-L1) [92]. This finding has important implications for these patients, as immune 
checkpoint inhibitors are proposed for treatment when tumors acquire resistance to 
EGFR-TKIs. Thus, downregulation of E-cadherin and acquisition of EMT characteris-
tics in EGFR-TKI-resistant lung cancer cells, which correlate with reduced expression 
of PD-L1, might limit the effectiveness of this treatment strategy [92]. Interestingly, 
EFGR-TKI gefitinib-resistant cells exhibit Src activation and Hakai upregulation [93]. 



Page 16 of 23Escuder‑Rodríguez et al. Cellular & Molecular Biology Letters            (2025) 30:9 

Knockdown of Hakai results in increased E-cadherin expression, reduced stemness, 
and resensitization to gefitinib [93]. Treatment of resistant cells with the dual inhibitor 
JMF3086, which simultaneously targets HMGR and HDAC, results in decreased Hakai 
transcription and Src inactivation, which in turn increases E-cadherin protein levels 
and reduces vimentin expression and stemness while restoring EGFR-TKI sensitivity 
[93]. Taken all together, targeting Hakai in chemotherapy resistant non-small cell lung 
cancer would be an interesting strategy to explore.

Breast cancer Approximately one-third of breast cancers lack estrogen receptor α 
(ERα), which is important for the response to estrogen and regulates proliferation and 
tissue development. ERα− cancers have a poor prognosis, do not respond to hormone 
response modifiers, and are often resistant to chemotherapy [94]. Estrogen regulates 
the transcriptional activation and ubiquitin-dependent proteolysis of ERα in coop-
eration with Src [94]. The Src protein kinase phosphorylates ERα and enhances its 
affinity for estrogen. In primary breast cancer, the levels of Src and ERα are inversely 
correlated. Both proteasome and Src inhibitors increased ERα levels in cell lines. The 
inhibition of Src also impairs ligand-activated ERα ubiquitination. Src siRNA reversed 
the ligand-activated ERα loss [94]. In breast cancer cells, Hakai bind to ERα through 
its DNA-binding domain, resulting in the inhibition of its transcriptional activity, thus 
regulating the expression of ERα target genes [95]. This inhibition was reported to be 
independent of Hakai ubiquitin ligase activity, as it is based on Hakai competition with 
coactivators of ERα, including Src. estrogen-dependent proliferation and migration 
in breast cancer cells are inhibited by Hakai [95], in contrast with the proliferative 
estrogen-independent effects reported in other cell lines [18]. Conversely, the prog-
nostic value of CBLL1 gene expression in breast carcinomas was analyzed alongside 
that of other  m6A regulators. High CBLL1 gene expression was associated with a better 
prognosis in patients with breast cancer, and functional analysis revealed its involve-
ment in the regulation of multiple pathways, including apoptosis, the ESR1-pathway, 
and immune response. On the other hand, low expression of CBLL1 is associated with 
tamoxifen resistance [96]. These results suggest that a noncanonical mechanism can 
be implicated in breast cancer, where the ubiquitin ligase activity is not involved, fur-
ther suggesting that the E3 ligase activity of Hakai may not be involved in hormone-
dependent breast cancer. It would be important to reproduce these results and further 
investigate whether other hormone-dependent cancers have similar behavior.

E3 ubiquitin ligase activity of Hakai as a promising therapeutic strategy against cancer

Previous reports highlight the role of Hakai in tumor progression and metastasis, 
making it a promising drug target for cancer treatment. As previously mentioned, 
the novel HYB domain, structurally different from other PTB domains, represents a 
highly suitable target for therapeutic intervention. In 2020, a novel class of specific 
inhibitors targeting the HYB domain of Hakai was identified via virtual screening. A 
novel small-molecule inhibitor, called Hakin-1, was designed to disrupt the phospho-
rylated-E-cadherin binding site of Hakai [97]. By effectively blocking the Hakai-medi-
ated ubiquitination of E-cadherin, Hakin-1 prevents its degradation. In preclinical 
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studies using tumor xenograft models in mice, Hakin-1 demonstrated significant 
efficacy in inhibiting tumor growth and lung metastasis without observable toxicity 
effects [97]. While Hakin-1 represents the first reported inhibitor specifically target-
ing the HYB domain of Hakai, several nutraceuticals, such as celastrol, vinflunine, or 
silibinin, have also been documented to influence Hakai in several types of cancers 
[98–100]; however, none of these nutraceuticals are reported to directly and specifi-
cally target Hakai.

Conclusions
In this review, we highlight the latest knowledge available regarding the protein Hakai 
and its canonical and noncanonical emerging functions. Hakai is an important regulator 
of adherens junctions and a posttranslational regulator of E-cadherin at cell‒cell con-
tacts, which leads to epithelial cell plasticity and EMT. As novel interactions of this pro-
tein have been revealed, the number of cellular processes in which we now know Hakai 
is involved has increased, highlighting its importance as a drug target for targeted thera-
pies. Hakai was reported to be a regulator of the stability of other Src kinase substrates, 
and further studies are needed to fully understand its impact on different signaling path-
ways. More studies are needed to better understand the role of Hakai in proliferation 
and in cancer cell stemness. The role of Hakai in the nucleus has been revealed, as has 
its involvement in the  m6A writer complex. The mechanisms of the interaction of Hakai 
with the  m6A writer complex are still not fully understood but have tremendous biologi-
cal consequences. Finally, the potential of Hakai as a biomarker and its prognostic value 
in cancer also reveals its untapped potential in precision medicine. The development of 
the first allosteric inhibitor that targets its atypical substrate binding-domain is a prom-
ising step that could eventually lead to patient benefit.
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