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Introduction
HBO1, also known as KAT7 or MYST2, belongs to the MYST acetyltransferase family 
and is primarily responsible for histone H3 and H4 acetylation [1–4]. It exerts diverse 
roles in crucial cellular processes, including DNA replication and repair, gene transcrip-
tion, protein ubiquitination, immune regulation, stem cell pluripotency and self-renewal 
maintenance, and embryonic development. Initially identified as an interaction partner 
for the largest subunit ORC1 of the Origin Recognition Complex (ORC) [4], HBO1 is a 
611-amino-acid protein comprising a unique N-terminal serine-rich region (22% in aa 
1–167) and a conserved C-terminal domain of 270 amino acids specific to the MYST 
protein family. The MYST domain encompasses an acetyl-CoA binding region, facil-
itating histone acetylation, and an atypical C2HC zinc finger [5]. Studies suggest that 
the N-terminal domain (NTD) of HBO1 harbors a transcriptional inhibitory domain, 
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capable of downregulating androgen receptor expression and sequestering an essential 
cofactor from the NF-κB transcription complex, thereby reducing NF-κB activity [6, 7]. 
However, the crystal structure of NTD remains largely unexplored. Intriguingly, HBO1 
(311–611) displays higher activity than HBO1 (1–611) in vitro, implying a potential neg-
ative regulation of the histone acetyltransferase (HAT) activity of the C-terminal MYST 
domain by the NTD of HBO1 [8]. Therefore, protein modifications such as phosphoryla-
tion or cofactor/substrate binding may serve as pathways to alleviate this negative regu-
lation and fully unleash the HAT activity of HBO1.

Histone acetylation stands as a central function of HBO1. Acetylation, a prevalent 
protein modification in cells, holds pivotal roles in diverse cellular processes including 
cell proliferation, gene transcription, and signal transduction. Specifically, in the context 
of genomic histones, acetylation induces structural relaxation, thereby exposing DNA 
sites for crucial processes such as replication and transcription [9, 10]. The addition or 
removal of acetyl groups from histone lysine residues is mediated by lysine acetyltrans-
ferases (KATs) and deacetyltransferases, respectively. As a member of the KAT family, 
the functional mechanism and specific impact of HBO1 are still not fully elucidated. 
Moreover, the observed high expression of HBO1 in various cancer cells suggests its 
potential as a target for cancer treatment [11]. In summary, our understanding of HBO1 
remains incomplete, underscoring its substantial research value and warranting further 
investigation.

This article presents a comprehensive overview of HBO1 as a multifunctional acyl-
transferase, which is a key factor of cell functions, emphasizing its regulatory roles in 
DNA replication and participation in DNA repair. Additionally, HBO1’s involvement in 
ubiquitination, where it can be ubiquitinated itself and also acts as a ubiquitin ligase, 
is explored. The crucial role of HBO1 in immune regulation and T-cell development is 
highlighted, alongside its contribution to the regulation of stem cell pluripotency and 
self-renewal. Moreover, the article delves into the association between HBO1 and vari-
ous diseases, including malignant tumors and chronic obstructive pulmonary disease, 
with the aim of providing a fresh perspective for a comprehensive and systematic under-
standing of the multifaceted functions and mechanisms of the acyltransferase HBO1.

HBO1 is a multifunctional acyltransferase
As a member of the histone acetyltransferase family, HBO1 typically forms protein com-
plexes with various cofactors or partner proteins, serving as the core catalytic subunit 
to exert its function. The identified HBO1 protein complex primarily consists of HBO1, 
ING4/5, MEAF6, and BRPF1/2/3 or JADE1/2/3 [12]. ING4 and ING5, belonging to the 
ING tumor suppressor family, regulate the cell cycle and apoptosis [13, 14]. H3K4me3 is 
a mark that is found near the transcription start site (TSS) of actively transcribed genes 
[15]. The N-terminal domain of ING4/5 forms homodimers or heterodimers, recogniz-
ing the histone H3 lysine 4 trimethylation (H3K4me3) site through the C-terminal PHD 
domain, subsequently recruiting the HBO1 complex to promote histone acetylation [13, 
14, 16–19]. BRPF or JADE serve as scaffold proteins for the HBO1 complex, enhancing 
its acetylation function [2, 16, 20, 21]. BRPF primarily targets histone H3, while JADE 
predominantly targets H4 [3, 17]. The BRPF protein typically comprises an N-terminal 
PHD-C2H2 zinc finger-PHD domain (PZP), a central bromodomain, and a C-terminal 
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PWWP domain [17, 22]. When HBO1 binds to BRPF1, the complex’s action on chro-
matin acetylation is confined to histone H3, resulting in the increases of H3K23ac and 
H3K14ac [17]. The interaction between BRPF2 and HBO1 is primarily localized to a 
short N-terminal region of the former and the MYST domain of the latter. The simulta-
neous binding of both to histone proteins allows for the correct positioning of the N-ter-
minal tails of the histones at the acetyltransferase active site of HBO1, thereby enhancing 
the acetyltransferase activity of HBO1. The binding of the N-terminal region of BRPF2 
may also stabilize HBO1 in a more physiological conformation, thereby enhancing its 
interaction with histone substrates, ultimately boosting the acetyltransferase activity of 
HBO1 [21]. Additionally, compared with HBO1 alone, the BRPF3 complex enhances the 
levels of H3K9ac, H3K14ac, and H4K16ac [22]. JADE-1 is the most prevalent member 
of the JADE family and serves as the essential cofactor for the HBO1 acetyltransferase 
complex [23]. Similar to BRPF, JADE also possesses two PHD domains, capable of syn-
ergistic action with ING4/5 to enhance HBO1-mediated histone acetylation [2, 14, 16]. 
Additionally, phosphorylation of JADE1 during the cell cycle may regulate the removal 
of HBO1 complexes from chromatin, facilitating histone deacetylation during mitosis 
[24].

Remarkably, these subunits are not exclusive to the HBO1 complex, and some subu-
nits are involved in the composition of other HAT complexes. Studies have shown that 
JADE1 physically associates to Tip60 HAT and enhances the acetylation targeting H4 
[25]. In addition, BRPF, ING5, and MEAF6 are involved in the composition of MOZ/
MORF complex. Similar to its role in HBO1 complex, BRPF acts as a scaffold in MOZ/
MORF complex to connect MOZ/MORF with ING5 and MEAF6. Additionally, BRPF is 
also important for activating the MOZ/MORF complex. Just like its function in HBO1 
complex, BRPF is able to upregulate the acetyltransferase activity of MOZ/MORF [26]. 
ING5 targets H3K4me3 at the promoter of active transcription region and recruits the 
MOZ/MORF complex for histone acetylation [27]. In conclusion, by studying these sub-
units shared between the HBO1 complex and other HAT complexes, we have a clearer 
understanding that their roles in the HBO1 complex are universal.

HBO1 significantly influences gene expression, signal transduction, and cellu-
lar growth by affecting acetylation function. HBO1 is located at the transcriptional 
start site (TSS) of active genes, where it directly acetylates histones, thereby regu-
lating gene transcription. The strength of acetylation signal HBO1 signaling corre-
lates closely with gene expression levels [14, 28]. For instance, HBO1 is recruited to 
the promoter of glycolysis-related genes by the transcription factor SIX1, facilitating 
their transcription through H4K5 acetylation. HBO1 knockdown or knockout leads to 
decreased glucose uptake, pyruvate levels, lactate production, adenosine triphosphate 
(ATP) levels, and extracellular acidification rate (ECAR), while oxygen consump-
tion rate (OCR) increases. In cancer cells, SIX1 enhances the Warburg effect via this 
pathway [29]. Additionally, HBO1 promotes CTNNB1 gene transcription by acetylat-
ing H3K14, H4K8, and H4K12, thereby activating the Wnt/β-catenin signaling path-
way [30]. In leukemia, HBO1 upregulates HOXA9 and HOXA10 expression through 
H3K14 acetylation, maintaining leukemia stem cell characteristics [31, 32]. Moreover, 
the NUP98–HBO1 fusion protein induces abnormal histone acetylation, leading to 
increased acetylation levels at the HOXA9 promoter on H4K8, H4K12, and H3K14 
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and activation of carcinogenic features in chronic myeloid mononuclear leukemia 
(CMML) [33]. HBO1 also participates in p53-mediated transcriptional activation of 
p21/CDKN1A and GADD45A through its HAT active site [34]( Fig. 1).

However, recent research on BRPF2–HBO1 and JADE1–HBO1 complexes has chal-
lenged the traditional view of HBO1’s substrate specificity. It has been found that 
HBO1 is not restricted to histone H3 and H4 acetylation, as previously believed. In 
addition to acetylation, HBO1 can catalyze propionylation, butyrylation, and croto-
nylation both in vivo and in vitro. Furthermore, HBO1 can extend its catalytic activity 
to histone H2. Interestingly, the specific targeting function of BRPF and JADE appears 
to be less distinct, leading to considerable overlap in catalytic sites on histones H3 
and H4 within the HBO1 complex [28]. This intriguing observation warrants further 
investigation to fully understand its implications. Additionally, lysine benzoylation 
(Kbz) has emerged as a novel posttranslational modification involved in chromatin 
remodeling, transcriptional regulation, and tumor growth. HBO1 has been identified 
as a participant in Kbz in mammals, further expanding its functional repertoire [35]. 
Lastly, HBO1 is also involved in histone acetyl-acetylation (Kacac) processes, adding 
another layer of complexity to its regulatory mechanisms [36].

In summary, HBO1 emerges as a multifunctional acyltransferase with significant 
involvement in histone acetylation and potentially nonhistone substrates. However, 
the interaction mechanism between HBO1 and the MEAF6 protein within the HBO1 
complex remains unexplored, along with its biological implications. Furthermore, the 
distinctions among the BRPF1/2/3 and JADE1/2/3 families have not been systemati-
cally elucidated. It remains unclear whether their anchoring sites on histones, as scaf-
fold proteins, exhibit consistency across these families. These unresolved questions 
underscore the need for further research in this field.

Fig. 1 HBO1 complexes and gene expression. HBO1 forms complexes with other proteins to acetylate 
histones and promote the expression of multiple genes. The HBO1 complex with BRPF as the scaffold mainly 
targets histone H3 acetylation, while the HBO1 complex with JADE as the scaffold mainly targets histone 
H4 acetylation. The histone acetylation will promote the expression of many genes including SIX1, CNTTB1, 
HOXA9, HOXA10, p21/CDKN1A, and GADD45A 
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HBO1 has a regulatory effect on DNA replication and is involved in DNA repair 
after ultraviolet irradiation
Eukaryotic DNA replication is a continuous process encompassing various tightly reg-
ulated steps, including replication origin recognition, pre-replication complex loading, 
and replication fork initiation. Key factors such as ORC1, CDT1, CDC6, and MCM are 
essential for orchestrating these steps [37]. HBO1 is widely recognized for its indispen-
sable role in DNA replication, as evidenced by numerous studies.

During the assembly of the pre-replication complex (pre-RC), ORC initially recruits 
CDC6 and CDT1 to the replication origin in the early stage of the G1 phase [38]. Sub-
sequently, CDT1 directly interacts with HBO1, facilitating the recruitment of HBO1 to 
the replication origin [39]. The HBO1–JADE complex promotes H4K5/8/12 acetyla-
tion, leading to the relaxation of chromatin conformation. This process facilitates the 
loading of the MCM complex onto replication origins and promotes the assembly of 
pre-replication complexes [39, 40]. Depletion of Xenopus laevis HBO1 in Xenopus lae-
vis egg extracts results in the loss of MCM2-7 chromatin binding and elimination of 
DNA replication, indicating the necessity of HBO1 for MCM2-7 complex chromatin 
binding during the G1 phase, a critical step in DNA replication licensing [41]. Studies 
have demonstrated that HBO1 and MCM2 functions rely on the N-terminal domain of 
MCM2 and the C2HC zinc finger of HBO1 [5]. HBO1 directly interacts with CDT1 and 
enhances CDT1-dependent replication, although it is not indispensable for CDT1’s asso-
ciation with replication origins [39]. In the context of stress response, phosphorylation 
of CDT1 can inhibit the recruitment of HBO1 histone acetylase, consequently block-
ing replication licensing [42]. Moreover, the BRPF3 scaffold specifically guides HBO1 to 
H3K14ac, promoting the loading of CDC45 to activate DNA replication in the S phase 
[1]. Thus, through collaboration with different scaffolds, HBO1-mediated chromatin 
acetylation facilitates two consecutive steps in replication initiation: licensing and activa-
tion. In the S phase, the regulatory protein Geminin prevents the second round of DNA 
replication by inhibiting the essential replication factor CDT1. Notably, HBO1 may be 
inhibited to affect this process, because Geminin does not inhibit MCM loading through 
simple spatial interference of the CDT1–MCM2-7 interaction, but plays a role through 
nonspatial mechanisms [40, 43, 44]. HBO1 has been shown to acetylate ORC2, MCM2, 
CDC6, and Geminin in vitro, indicating its potential role in regulating the initiation of 
DNA replication by acetylating these factors [41]( Fig. 2).

The role of HBO1 in the origin of replication is also subject to regulation by other 
factors. For instance, FAD24 (adipocyte differentiation factor 24) has been identified to 
interact with HBO1 during the process of pre-adipocytes transitioning into adipocytes 
through mitotic clonal expansion (MCE). FAD24 co-localizes with HBO1 in chromatin 
during pre-replication complex assembly. Inhibition of FAD24 expression during adipo-
cyte differentiation leads to reduced recruitment of HBO1 to the origin of DNA replica-
tion, while knockout of the HBO1 gene inhibits MCE and adipogenesis. These findings 
suggest that FAD24 acts as an auxiliary factor in recruiting HBO1 to the origin of DNA 
replication [45–47]. Furthermore, under conditions of hyperosmotic stress, HBO1 can 
directly bind to p53, thereby inhibiting HBO1-HAT activity and subsequently impeding 
the loading of the MCM2-7 complex. This results in the stalling of pre-replication com-
plex assembly. Treatment with hydroxyurea (HU), which blocks DNA replication fork 
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progression, leads to downregulation of p53-dependent HBO1 activity [8, 11]. Interest-
ingly, after the activity of HBO1-HAT decreased, the MCM2-7 complex still binds to 
chromatin. One possible explanation is that HBO1 may have other functions in the S 
phase, although the specific mechanisms remain unclear.

The experiments indicating that “HBO1 plays an important role in DNA replication 
and cell proliferation” have predominantly utilized human tumor cell lines or other 
immortalized cells, such as HeLa cells, C33A cells, MCF7 cells, Saos2 cells, A549 
cells, and 293  T cells. Interestingly, experiments conducted using mouse embryos 
revealed that fibroblasts lacking HBO1, isolated from embryos, can proliferate nor-
mally and exhibit normal MCM localization. Moreover, embryos lacking HBO1 can 
progress through normal development up to the gastrulation stage, with develop-
mental abnormalities and mortality occurring thereafter. Specifically, organs such as 
blood vessels and mesenchyme fail to differentiate and develop normally in embryos 
lacking HBO1, leading to a significant decrease in total RNA extraction from cells. 
Notably, crucial regulatory genes such as Notch1 during gastrulation development 
were undetected in HBO1-deficient embryos. These findings suggest that embryonic 
death may be attributed to inadequate gene expression products rather than defects 

Fig. 2 HBO1-mediated histone acetylation in DNA replication. HBO1-mediated histone acetylation promotes 
G1 phase DNA replication licensing and S phase DNA replication activation. In the G1 phase, the HBO1–JADE 
complex promotes the acetylation of H4K5/8/12 to relax the chromatin conformation, and facilitates the 
loading of the MCM complex to the replication starting point, promoting the assembly of the pre-replication 
complex. In S phase, the HBO1–BRPF3 complex specifically directs H3K14ac, thereby promoting CDC45 
loading to activate S-phase DNA replication. Additionally, the regulatory protein Geminin prevents the 
second round of DNA replication by inhibiting the basic replication factor CDT1, possibly by inhibiting HBO1
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in cell proliferation. It suggests that HBO1’s primary role in embryonic development 
appears to be as a gene expression activator rather than a participant in DNA rep-
lication and cell proliferation [48]. Subsequent experiments conducted by the same 
research team using immortalized cells such as HeLa and 293T cells revealed that 
loss of HBO1 had minimal impact on cell proliferation and DNA replication. Instead, 
loss of HBO1 primarily affected genes involved in cell adhesion, resulting in reduced 
cell adhesion, particularly in 293T cells, with relatively minor effects on other cel-
lular processes [49]. Additionally, research has demonstrated that HBO1 plays a spe-
cific role at the centromere, where it interacts with M18BP1 to positively regulate the 
assembly of CENP-A and counteract heterochromatin-mediated centromere inactiva-
tion [50]. In summary, there remains significant scope for research and clarification 
regarding HBO1’s role in cell proliferation and DNA replication, as well as its overall 
impact. Questions persist regarding whether HBO1’s function is truly cell-intrinsic 
and the underlying mechanism of its identification, prompting deeper inquiry into its 
biological significance.

HBO1 participates in DNA repair following ultraviolet irradiation, primarily 
through its involvement in global genome nucleotide excision repair (GG-NER) [51]. 
Upon UV-induced DNA damage, the protein DDB2 recognizes sites of cyclobutyl 
purine dimers (CPD) and swiftly localizes to the damaged site [52, 53]. However, the 
densely packed chromatin structure poses a barrier to the entry of repair proteins. 
Therefore, histone modifications, such as acetylation and ATP-dependent chroma-
tin remodeling, are crucial during NER to overcome these structural obstacles [54]. 
HBO1 plays a key role in this process by phosphorylation at Ser50 and Ser53 by 
ATM/ARM, facilitating its binding to DDB2 and subsequent histone acetylation [51]. 
Additionally, HBO1 interacts with chromatin remodeling proteins ACF1 and SNF2H 
[55, 56], aiding in the maintenance of ACF1–SNF2H at the damage site to induce 
chromatin remodeling [51]. Furthermore, HBO1 mediates the phosphorylation of 
methyltransferase MLL1 at Ser516, leading to its localization at UV damage sites and 
subsequent methylation of histone H3K4 [57]. BAZ1A, a subunit of the chromatin 
remodeling factor ISWI family, targets trimethylated histone H3K4 (H3K4me3), dis-
rupting the interaction between DNA and histones and facilitating the recruitment 
of NER factors, including XPC, for DNA repair [51, 58, 59]. This coordinated action 
underscores the critical role of HBO1 in orchestrating chromatin modifications 
essential for efficient GG-NER (Fig. 3).

(See figure on next page.)
Fig. 3 HBO1 involvement in DNA repair after UV irradiation. HBO1 plays a crucial role in the DNA repair 
process after UV irradiation, primarily associated with global genome nucleotide excision repair (GG-NER). 
Following UV-induced DNA damage, DDB2 recognizes the cyclobutyl pyrimidine dimer (CPD) site, and 
phosphorylated HBO1 binds to DDB2, mediating histone acetylation. HBO1 also maintains the chromatin 
remodeling agent ACF1–SNF2H at the damage site, inducing chromatin remodeling. Additionally, the 
methyltransferase MLL1 interacts with HBO1 and localizes at the UV damage site to methylate histone 
H3K4. BAZ1A, a subunit of the SWI/SNF chromatin remodeling factor, targets trimethylated histone H3K4 
(H3K4me3). These mechanisms collectively disrupt the interaction between DNA and histones, facilitating the 
loading of NER factors including XPC for DNA repair
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Fig. 3 (See legend on previous page.)
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HBO1 can be ubiquitinated and also act as a ubiquitin ligase
Two ubiquitin complexes, SCF (SKP1/Cullin-1/Fbxw15) and CRL4 (DDB1-CUL4A-
RBX1), are involved in the ubiquitination of HBO1. Fbxw15 interacts with HBO1 to 
mediate its ubiquitination, leading to degradation primarily in the cytoplasm despite 
the presence of histone acetyltransferase activity associated with HBO1 in the nucleus. 
Lys338 has been identified as the receptor site for SCF-mediated ubiquitination of 
HBO1. Mitogen-activated protein kinase (MEK1) phosphorylates HBO1, promoting 
its degradation via the Fbxw15-mediated ubiquitin proteasome pathway. Studies have 
shown that overexpression of MEK1 increases HBO1 degradation, while MEK1 silencing 
stabilizes HBO1 acetyltransferase. Knockout of Fbxw15 abolishes MEK1-induced HBO1 
degradation, indicating Fbxw15 dependence in this process. Furthermore, MEK1 knock-
out disrupts the interaction between HBO1 and Cullin1/Fbxw15 and reduces HBO1 
ubiquitination in cells, suggesting MEK1’s role in HBO1 phosphorylation and subse-
quent degradation by Fbxw15-mediated ubiquitination. In mouse lung epithelial cells 
(MLE-12), endotoxin lipopolysaccharide (LPS) induces HBO1 degradation via MEK1 
phosphorylation and the Fbxw15-mediated ubiquitin proteasome pathway, resulting 
in reduced H3K14ac levels and cell proliferation [60]. Conversely, LPS stimulation in 
THP-1 monocytes and human primary macrophages leads to increased HBO1 protein 
levels owing to elevated deubiquitinase USP25 levels, promoting HBO1 deubiquitina-
tion and stabilization. USP25-mediated deubiquitination enhances HBO1’s response to 
the endotoxin-induced inflammatory response, thereby boosting the transcription of 
interleukin (IL)-1β, IL-6, and IL-10 mediated by HBO1 [61]. Moreover, after UV irra-
diation-induced DNA damage, HBO1 is degraded by the DDB2-mediated CRL4 com-
plex. Ser50 and Ser53 phosphorylation of HBO1 in an ATM/ATR-dependent manner 
facilitates its preferential ubiquitination by  CRL4DDB2, essential for appropriate cell cycle 
arrest to complete DNA repair. Mutating Ser50 and Ser53 inhibits HBO1 phosphoryla-
tion, leading to failure in repairing DNA damage post-UV irradiation and inhibiting cell 
proliferation [62] (Fig. 4).

Indeed, HBO1 exhibits an intriguing dual role as an E3 ubiquitin ligase, targeting not 
only itself but also other proteins. In breast cancer, HBO1 functions as an E3 ubiquitin 
ligase to negatively regulate the stability of estrogen receptor α (ERα) [63]. Its MYST 
domain possesses E3 ligase activity, facilitating the proteasome-dependent degradation 
of ERα. Interestingly, estradiol-17β can inhibit HBO1’s E3 ligase activity on ERα in vitro, 
thereby attenuating ERα ubiquitination, whereas highly active ERα mutants are more 
susceptible to HBO1’s E3 ligase activity [64]. Whether HBO1 can exert its ubiquitin 
ligase function on additional proteins remains a topic worthy of further investigation.

HBO1 is essential for immune regulation and T cell development
Thymic epithelial cells (TECs) govern the differentiation and selection of thymic T 
lymphocytes [65], with medullary thymic epithelial cells (mTECs) being particularly 
influential in negative selection of autoreactive thymocytes and the differentiation of 
regulatory T cells (Tregs) [66]. The autoimmune regulator (AIRE) orchestrates the 
transcription of numerous peripheral tissue genes (PTGs) in mTECs [66, 67]. Defi-
ciencies in AIRE, observed in both humans and mice, lead to impaired expression 
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of relevant PTGs in mTECs, resulting in the escape of autoreactive T cells from the 
thymus or the failure to induce Treg cells, thereby fostering impaired thymic nega-
tive selection and the development of multiple organ autoimmune diseases [68–70]. 
Recent research underscores the pivotal role of HBO1 in thymus development and 
the mediation of immune tolerance. Notably, highly transcribed HBO1 and abundant 
H3K14ac are evident across all TEC subsets. HBO1-deficient mice exhibit hypoplas-
tic thymuses in young adulthood, characterized by significantly reduced numbers 
of thymic epithelial cells, particularly in mTECs. Flow cytometry analyses reveal a 
diminished proportion and count of  AIRE+ cells, suggesting that HBO1 in TECs is 
crucial for  AIRE+ and thymic medulla expansion. Moreover, in mice lacking HBO1, 
the expression of AIRE-dependent PTGs, including AIRE-induced lung antigen 
BPIFB9A essential for lung immune tolerance, substantially decreases compared with 
control groups [71, 72], while AIRE-independent PTGs remain mostly unaffected. 
Using the small molecule inhibitor WM-3835, which targets HBO1 function, or 
employing the HBO1 gene deletion system, acute inhibition of HBO1 activity demon-
strates no interference with AIRE expression, nor does it alter the AIRE protein level 
in TECs. However, it does impede the transcriptional activation of AIRE target genes. 
Mechanistically, HBO1 may enhance chromatin accessibility around the promoter of 

Fig. 4 Ubiquitination and degradation of HBO1. HBO1 can undergo ubiquitination by the SCF (SKP1/
Cullin-1/Fbxw15) and CRL4 (DDB1-CUL4A-RBX1) complexes. Protein kinase MEK1 phosphorylates HBO1, 
promoting its degradation via the Fbxw15-mediated ubiquitin proteasome pathway. In mouse lung epithelial 
cells (MLE-12), LPS induces HBO1 degradation through this pathway. Conversely, LPS stimulation in THP-1 
monocytes and human primary macrophages inhibits HBO1 ubiquitination by increasing the level of 
deubiquitinase USP25 protein, resulting in varying degrees of HBO1 protein elevation. Furthermore, DNA 
damage caused by UV irradiation leads to the degradation of HBO1 by the DDB2-mediated CRL4 (DDB1–
CUL4A–RBX1) complex
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AIRE-regulated genes through its HAT activity, thereby facilitating the normal tran-
scription of PTGs. In summary, HBO1 plays a critical role in promoting the expan-
sion of mTECs and serves as a major regulator in AIRE-mediated PTG expression, 
consequently contributing to the induction of immune tolerance [73].

During T cell development, the expression of CD8 genes undergoes regulation through 
the concerted action of at least five different CD8 enhancers [74]. Recent investigations 
have highlighted the involvement of BRPF2 and HBO1 in this regulatory process. Specif-
ically, BRPF2 and HBO1 form a complex responsible for H3K14 acetylation of the CD8 
locus, with BRPF2 binding to the enhancer and HBO1 binding to the promoter of the 
CD8 gene. Microarray analysis and other findings have underscored the critical role of 
the BRPF2–HBO1 complex in acetylating H3K14 on the transcriptional regulatory ele-
ments of the CD8 gene, a process necessary for the effective activation of the CD8 gene. 
Moreover, the BRPF2–HBO1 complex has been shown to directly interact with key 
regulatory factors involved in CD8 gene activation, such as RUNX family transcription 
factors and Ikaros [75, 76]. This complex may facilitate chromatin relaxation through 
H3K14ac, subsequently recruiting transcription complexes to the CD8 enhancer to fully 
activate the CD8 locus. Importantly, these findings highlight the role of the BRPF2–
HBO1 complex in activating CD8 expression rather than merely maintaining its expres-
sion [77]. Furthermore, HBO1 has been implicated in regulating the functional activity 
of  CD8+ tissue-resident memory T cells (Trm) and tumor-infiltrating lymphocytes (TIL). 
SCML4, a transcription factor critical for Trm and TIL survival and activation, has been 
found to bind to components in the HBO1–BRPF2–ING4 complex through its C-termi-
nal domain. Treatment with a BRPF2 inhibitor (NI-57) significantly reduced the expres-
sion of intracellular T cell effector molecules (IFNG and GZMB) in Jurkat cells, while 
treatment with an H3K14ac deacetylase inhibitor (HDAC-IN-38) notably increased 
their expression. Mechanistically, SCML4 recruits the HBO1–BRPF2–ING4 complex 

Fig. 5 HBO1 promotes immune-related gene expression via histone acetylation. BRPF2 and HBO1 form 
complexes that bind to the enhancer and promoter of the CD8 gene, respectively. Together, they acetylate 
histone H3 at lysine 14 (H3K14ac) at the CD8 locus, leading to full activation of the CD8 gene. The BRPF2–
HBO1 complex also interacts directly with key regulatory factors, such as the RUNX family transcription 
factors and Ikaros, to activate CD8 gene expression. SCML4, a transcription factor crucial for CD8+ resident 
memory T cells (Trm) and tumor-infiltrating lymphocytes (TIL), recruits the HBO1–BRPF2–ING4 complex to 
mediate H3K14ac, thereby enhancing chromatin accessibility during T cell activation and increasing the 
expression of T cell effector molecules, such as interferon-gamma (IFNG) and granzyme B (GZMB)
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to mediate H3K14ac, thereby enhancing chromatin accessibility during T cell activa-
tion and increasing the expression of relevant genes associated with T cell function [78]
(Fig. 5).

HBO1 is involved in regulating pluripotency and self‑renewal of stem cells
HBO1 is involved in regulating the self-renewal of hematopoietic stem cells. Adult 
hematopoiesis is a tightly regulated process [79], and HBO1 has emerged as a crucial 
factor in maintaining hematopoietic stem cells (HSCs). Studies utilizing HBO1 gene-
deficient mice have revealed that HBO1 deficiency leads to pancytopenia in both blood 
and bone marrow within 2–6 weeks of HBO1 gene deletion, ultimately resulting in death 
due to hematopoietic failure. HBO1-deficient mice exhibit significantly reduced num-
bers of hematopoietic stem cells and progenitor cells, as well as diminished levels of 
peripheral blood cells, lymphocytes, and monocytes. HSCs in  vivo can undergo three 
types of division: symmetric self-renewal, asymmetric division producing one HSC 
and one multipotent progenitor cell, and symmetric differentiation yielding two multi-
potent progenitor cells [80, 81]. Interestingly, HBO1 deficiency disrupts symmetrical 
self-renewal of HSCs, with all divisions potentially leading to symmetrical differentia-
tion. Competitive transplantation experiments further demonstrate the involvement of 
HBO1 in maintaining the repopulating ability of HSCs, underscoring its critical role in 
HSC pool stability. Genome analysis of HBO1 knockout mice has revealed downregu-
lation of genes crucial for HSC function, including Hoxa9, Pbx1, GATA2, Mpl, Itga2b, 
and Irf8. These genes play pivotal roles in HSC quiescence, proliferation, and develop-
ment [82, 83]. For instance, Mpl is involved in HSC quiescence and proliferation, while 
GATA2 is essential for hematopoietic stem/progenitor cell (HSPC) development [84, 
85]. Moreover, HOX proteins and their cofactors, such as Pbx1 and Meis1, are critical 
for cell identity during embryonic development and adult hematopoiesis, with Hoxa9 
deficiency resulting in reduced long-term repopulating ability of HSCs [86, 87]. Notably, 
the expression of genes essential for stem cell function is dependent on elevated levels 
of H3K14ac at their respective loci [88]. HBO1 deficiency leads to decreased H3K14ac 
levels, particularly at genes crucial for hematopoietic stem cell function. This suggests 
that HBO1 promotes the expression of a transcription factor network through its his-
tone acetyltransferase (HAT) activity, which is indispensable for the maintenance and 
self-renewal of HSCs during adult hematopoiesis [89].

HBO1 is also involved in the normal differentiation of neural stem cells. Neural 
stem cells in the forebrain possess the remarkable ability to differentiate into neurons, 
astrocytes, and oligodendrocytes [90, 91]. HBO1 has been identified as a critical factor 
required for the differentiation of neural stem/progenitor cells (NSPCs). Studies utiliz-
ing mouse NSPCs lacking HBO1 have revealed that these cells exhibit slow proliferation 
rates for at least 15 generations and are unable to differentiate into neurons and oligo-
dendrocytes, but can only differentiate into astrocytes. Deletion of HBO1 results in a 
decrease in the level of H3K14ac in cells, accompanied by the downregulation of more 
than 1000 genes. Interestingly, these downregulated genes are not necessary for NSPC 
proliferation in vitro but are crucial for nervous system development, neuronal differ-
entiation, synaptic assembly, and behavioral regulation. Additionally, genes that are nor-
mally upregulated during normal differentiation are not activated in HBO1 knockout 
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cells. These genes are known to play specific roles in neuronal differentiation, including 
axon guidance, neuroactive ligand–receptor interaction, synaptic function, and cogni-
tion. For instance, SOX2, a transcription factor proposed to initiate neuronal processes 
by activating genes such as Neurod1 [92], requires HBO1 for its activation of target genes 
during differentiation. The absence of HBO1 during the middle stage of neurogenesis 
leads to abnormal cortical development and increased cell death. HBO1 knockout mice 
exhibit reduced cerebral cortex depth, increased cell density, enlarged lateral ventricles, 
smaller corpus callosum diameter, underdeveloped hippocampal structure, and under-
developed dentate gyrus compared with control mice. Interestingly, reexpression of 
HBO1 after a short duration of deletion rapidly restores NSPC differentiation potential. 
However, delayed reexpression only partially restores NSPC plasticity, requiring long-
term reexpression for full restoration [93]. In conclusion, HBO1-mediated H3K14ac 
plays pivotal roles in the normal differentiation and brain development of NSPCs, high-
lighting their importance in neurogenesis and brain function.

HBO1 is closely related to many diseases
The expression of HBO1 has been closely associated with the development of vari-
ous diseases. In several primary human tumor types, including testicular cancer, 
ovarian cancer, breast cancer, gastric/esophageal cancer, and bladder cancer, HBO1 
protein expression was found to be strongly upregulated [11]. In non-small cell lung 
cancer (NSCLC), the transcription level of HBO1 is increased, and HBO1 silencing 
or knockout has been shown to strongly inhibit cancer cell viability, proliferation, and 
migration, while its ectopic overexpression enhances these processes. H3–H4 histone 
acetylation and the expression of several potential oncogenes (CCR2, MYLK, VEGFR2, 
and OCIAD2) were significantly reduced in NSCLC cells with HBO1 silencing or knock-
out, suggesting that HBO1 may promote cancer cell growth through its HAT activity 
[94]. Similar patterns of HBO1 expression and function have been observed in osteosar-
coma and liver cancer cells, indicating a potential role in promoting cancer development 
via similar mechanisms [95, 96]. Conversely, downregulation of HBO1 has been found 
to alleviate the activation of hepatic stellate cells, inhibiting liver fibrosis [97]. HBO1 has 
also been implicated in the activation of the Wnt/β-catenin signaling pathway, contrib-
uting to the development of human glioblastoma, B-cell acute lymphoblastic leukemia, 
and bladder cancer [30, 98, 99]. Interestingly, HBO1 expression is significantly reduced 
in bronchial epithelial cells (HBEC) of patients with chronic obstructive pulmonary dis-
ease (COPD). Experimental studies in emphysema model mice have demonstrated that 
HBO1 can mitigate HBEC apoptosis and emphysema induced by cigarette smoke extract 
(CSE), suggesting a protective role for HBO1 in COPD pathogenesis [100].

WM-3835 (N′-(4-fluoro-5-methyl-[1,1′-biphenyl]-3-carbonyl)-3-hydroxybenzenesulf
onohydrazide), a specific HBO1 inhibitor, has been developed. WM-3835 can reduce the 
activity of acute myeloid leukemia tumor cells by inhibiting the level of H3K14Ac regu-
lated by HBO1 and further reducing the transcription of HOXA9 and HOXA10 [31]. In 
addition, WM-3835 also targets HBO1 to inhibit the development of castration-resistant 
prostate cancer (CRPC) [101], NSCLC [94], osteosarcoma [95], and other tumors. We 
hope that the advent of some drugs based on WM-3835 will bring a new dawn to treat-
ment of HBO1-related diseases by inhibiting HBO1.
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Summary and prospects
HBO1 exhibits a wide array of functions in cell biology, ranging from cell prolifera-
tion and gene expression to immune regulation, stem cell development, and cancer. 
However, several aspects of HBO1’s activity and regulation remain to be fully under-
stood. One key area for investigation is the substrate selectivity of HBO1 acetyltrans-
ferase. Understanding which histone residues and nonhistone proteins are targeted by 
HBO1 will provide insights into its diverse cellular functions. Additionally, the spe-
cific mechanism by which the N-terminal domain regulates HBO1 activity requires 
further elucidation, as it likely plays a crucial role in modulating HBO1’s function. 
Moreover, HBO1’s involvement in DNA replication presents an intriguing area for 
exploration. Clarifying HBO1’s precise role in this process and its interaction with 
other replication factors will enhance our understanding of DNA replication regu-
lation. Structural studies aimed at deciphering the complete structure of HBO1 are 
essential for comprehensively understanding its function. Such studies will shed light 
on the interaction between HBO1 domains, cofactor binding, and aid in the design of 
HBO1-targeting molecules for therapeutic purposes. The interaction between HBO1 
and MEAF6, as well as MEAF6’s specific role within the HBO1 complex, remains 
poorly understood and warrants further investigation. Furthermore, the relationship 
between HBO1’s acetyltransferase activity and disease pathogenesis requires special 
attention, particularly in cancer where HBO1 is highly expressed. Elucidating the spe-
cific functions of HBO1 in cancer cells could uncover novel therapeutic targets for 
cancer treatment.
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