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Introduction
Cancers that develop in the reproductive organs are referred to as reproductive can-
cers [1]. PCa is the most typical kind of male reproductive cancer [2]. Prostate-specific 
antigen (PSA) concentrations in the blood are assessed during PCa [3]. Regarding the 
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number of diagnoses among malignancies, PCa comes in fourth [2]. An estimated 1.41 
million new instances of cancer are reported each year, making up 7.3% of all cancer 
diagnoses [2]. In addition, it causes 375,000 deaths annually, or 3.8% of all cancer-related 
deaths [2]. Reproductive malignancies have been the focus of considerable research due 
to their high incidence and death rates.

There is evidence that chronic inflammation, caused by hormones, chemicals, radia-
tion, stress, infectious agents, or other environmental factors, plays a crucial role in 
PCa development. This notion is supported by inflammation being a known risk fac-
tor for the PCa. Researchers observed that there was a connection between persistent 
prostate inflammation and the development of PCa. This may be because the prostate 
is more susceptible to infection than other parts of the body. Additionally, these find-
ings are clearly evident by the histological features associated with inflammation seen in 
prostate tissues [4]. Numerous epidemiological studies have shown the direct relation-
ship between inflammatory genes and the risk of PCa and the antagonistic relationship 
between PCa and anti-inflammatory medications [5, 6]. Thus, one of the instructional 
mechanisms involved in the development of cancer is inflammation. Malignant cells spa-
tiotemporally release cytokines and CXC chemokines, and leukocyte subtypes undergo 
cell trafficking toward the TME [7]. The complex procedure of cell recruitment implies 
different leukocyte subsets with the ability to promote or inhibit malignancy by directing 
immune cells to the sites of inflammation.

Methods
The investigation for this review paper was conducted using Google Scholar, PubMed/
Medline, and Web of Science. It had been scheduled to conduct the literature review 
between January and August of 2023. Table 1 provides further details in this regard.

Proinflammatory cytokines and CXC chemokines
Cytokines are small protein molecules that are released into the body and have a 
molecular weight of less than 40 kilodaltons. They are generated by practically every 
cell in the body to control and impact the immune response [8]. The secretion of pro-
inflammatory cytokines will stimulate the production of further cytokines as well 
as the stimulation of immune cells [9]. Thus, when the phrase “cytokine storm” first 
appeared, it defined inflammation as the unexpected upregulation of an inflammatory 

Table 1  Summing up the search methodology

Elements Description

The date or time of the investigation January 2023–August 2023

Timeframe 1997–2023

Investigate the databases and other online resources Google Scholar, PubMed/Medline, and Web of Science

Performed research on appropriate keywords Prostate cancer, prostate adenocarcinoma, proinflam-
matory cytokines (interleukins), CXC chemokines 
ligands (CXCL1–CXCL16), and CXC receptors (CXCRs)

Criteria for inclusion and exclusion Only original research and reviews written in English

Any applicable extra information We evaluated data from in-depth investigations, 
reviews that have previously been written, original 
studies, and clinical and preclinical trials
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process caused by the release of cytokines [10]. Recent studies, however, suggest 
that any immune response must include the simultaneous release of pro- and anti-
inflammatory cytokines [11]. Multiple names are used to refer to cytokines, including 
interleukins (ILs), chemokines, and growth factors [12]. The so-called superfamilies 
that collectively make up cytokines rarely describe common genes but rather related 
structural features [13]. Moreover, numerous cell groups are capable of producing the 
same cytokine. Cytokines are pleiotropic because their actions vary depending on the 
cell they are targeting [12]. Furthermore, several cytokines may have the same effect 
and hence be unnecessary. However, they may have a synergistic impact. Finally, they 
may initiate signaling cascades, allowing even trace levels of protein to have disas-
trous implications [14]. Figures 1 and 2A provide a brief overview of several cells that 
express a variety of chronic and acutely induced inflammatory cytokines, as well as 
the cytokines involved in acute and chronic inflammatory responses [15, 16].

CXC chemokines are the main chemokine in terms of distribution and localization, 
and many of their genes have previously been defined [17]. Their bigger, serpentine 
G-protein-coupled receptors (GPCRs) regulate the several roles of CXC chemokines 
in organisms with multiple cells, including the distinctive cell movement [18]. We 
recently discussed the classification of CXC chemokines and their effects on immune 
surveillance in a number of inflammatory diseases, such as diabetes, nonalcoholic 
fatty liver disease, liver cancer, endometriosis, and polycystic ovary syndrome. These 
CXC chemokines function as chemotaxis, attracting immune cells and causing 
inflammation [19, 20]. We will thus have new opportunities for a better understand-
ing of the role of CXC chemokines in the genesis of inflammatory disorders if we have 
a deeper knowledge of their potential mechanisms in inflammatory disorders and 
their management.

Fig. 1  A schematic illustration of several cells that act as both major sources and targets of various 
proinflammatory cytokines, including interleukins, NK, TNF-α, mast cells, TGF-β, and GM-CSF, etc.



Page 4 of 39Ullah et al. Cellular & Molecular Biology Letters           (2024) 29:73 

Interest in the associations between inflammation and PCa has developed with regard 
to the proinflammatory cytokines and CXC chemokines in PCa. It has been shown 
that chronic inflammatory conditions such as prostatitis raise the risk of PCa [21, 22]. 
Moreover, several recent studies have shown that these proinflammatory cytokines and 
CXC chemokines play a crucial role in the onset and progression of PCa [23–26]. By 
understanding how proinflammatory cytokines and CXC chemokines contribute to PCa 
development, we may be able to build a superior targeted therapy approach. Thus, our 
goal is to present an in-depth review of the most recent advancements in our knowl-
edge of how proinflammatory cytokines and CXC chemokines influence the onset of 
PCa and the immune response to it. The complex interaction between proinflammatory 
cytokines and the CXC chemokines system is highlighted, and its potential use in PCa 
therapy is explored. Furthermore, the status and potential of theranostic PCa therapies 
based on cytokines, CXC chemokines, and CXCRs are examined.

IL‑1 and PCa

Figure  3 illustrates the various ways that proinflammatory cytokines (interleukins) 
affect the onset and progression of PCa. The IL-1 family of cytokines presently con-
sists of seven ligands with proinflammatory activity: IL-1α and IL-1β, IL-18, IL-33, 
IL-36α, IL-36β, and IL-36γ. It is generally known that these cytokines significantly 
affect how the innate and adaptive immune systems react. IL-1’s role in the emer-
gence of malignancies is becoming more and more clear, as is the connection between 

Fig. 2  A List of cytokines that trigger both chronic and acute inflammation. B A diagram illustrating how 
acetylation of Krüppel‐like factor 5 (KLF5) promotes osteoclast formation by transcriptionally activating 
CXCR4, which in turn increases IL-11 production. This results in metastasis to the bones. Heavy acetylation of 
the KLF5 transcription factor in the bone microenvironment causes bone metastatic lesions by stimulating 
the CXCL12/CXCR4 chemokine axis and additional paracrine signaling pathways, such as those of IL-11 and 
soluble HH (SHH). This mechanism could have an impact on the detection and management of PCa bone 
metastases
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inflammation and cancer [27]. It has been discovered that the expression of the six 
transmembrane protein of prostate 2 (STAMP2), which is important for the prolif-
eration and survival of PCa cells, is modulated by inflammatory signals. Regarding 
this, STAMP2 can be synergistically induced by IL-1β through nuclear factor kappa 
B (NF-kB) and the production of signal transducer and activator of transcription 3 
(STAT3). Androgen receptor (AR) signaling is not needed for this. Interestingly, PCa 
cells appear more vulnerable to cytokine treatment when STAMP2 is knocked down. 
Therefore, regulating STAMP2 through inflammatory cytokines may impact the pro-
gression of PCa (Fig. 3) [28]. These findings reveal that STAMP2 reacts to inflamma-
tory signals and operates as a viability component for AR-positive PCa cells under 
these circumstances. Moreover, the levels of inflammatory mediator expression 

Fig. 3  Proinflammatory cytokines (interleukins) play a role in PCa, as depicted in the illustration. IL-1 and 
the family’s members, including IL-α and IL-β, engage with several pathways, including NF-kB, STAT3, JNK, 
and MAPK, as well as proteins/molecules such as STAMP2, LCN2, ELF3, and PSGR, to promote PCa cell 
proliferation, survival, and bone metastasis. The PI3K/Akt/NF-kB pathways are responsible for IL-4-induced 
AR activation in PCa. Whereas the STAT6 pathway contributed to the development of PCa. IL-6 links with 
various signaling pathways, including NF-kB, STAT3, and Akt, as well as proteins and molecules such as 
KMT12D, Gankyrin/NONO/AR, HMGB1/GHRT1/Twsit1, and ROS, to facilitate the migration and proliferation of 
PCa cells. IL-7 stimulates MMP3 and MMP7 synthesis and activates the Akt/NF-kB pathway, which promotes 
PCa cell movement and invasion, while the STAT5, JAK, and ERK pathways promote EMT and metastasis. 
IL-8 stimulates PCa proliferation, migration, invasion, and defense against apoptosis via the NF-kB/STAT3/
Akt pathway. IL-8/CXCR2 pathway activation and AR signaling disruption increase PCa NED and malignancy 
following Wnt4/TCF7L1 induction. IL-9 stimulates mast cell activation to enhance prostate carcinogenesis. AR 
signaling increases IL-10 and myeloid cell-1 (TREM-1) signaling on macrophages and improves PCa cell 
motility and invasion. Prostate microenvironment stromal cells’ paracrine IL-11 production via IL-11R–STAT3 
signaling promotes PCa cell growth and invasiveness. IL-6 and TNF-α work as risk factors in PCa development. 
IL-17F triggered the PI3K/Akt signaling pathway to increase PCa cell malignancy, and the IL-17/CTSK axis 
controls PCa growth and proliferation. PCa membrane-bound TGF-α stimulates EGFR on osteoblasts during 
bone metastasis through cell-to-cell adhesion. Autocrine ERK signaling and PGE2 production by active EGFR 
increase bone development. The essential oncogene protein GOLM1 induces EMT in PCa by activating the 
TGF-β1/Smad2 signaling pathway. The up arrow (↑) symbol represents upregulation
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among the localized PCa tumors from 118 neoadjuvant-naive patients who had radi-
cal prostatectomy varied greatly, according to immunohistochemistry (IHC) analyses 
[29]; however, the majority of samples (> 94–95%) had, IL-1, and NF-kB expression, 
which is a recognized modulator of inflammatory reactions. Furthermore, early 
biochemical recurrence was linked to high IHC scores for IL-1 [29, 30]. According 
to these study data, PCa frequently exhibits inflammatory events and dysregulated 
cytokine (IL-1) production, which may play a role in etiology and disease progression.

A 25-kDa secreted glycoprotein known as lipocalin-2 (LCN2) serves both physi-
ological and pathological purposes [31]. According to recent research, many signaling 
pathways, including p38, NF-kB, and c-Jun N-terminal kinase (JNK), were immediately 
activated following TNF treatment. Additionally, this research found that after 24 h of 
stimulation, IL-1 mRNA levels were considerably increased and induced LCN2. Mech-
anistically, the overexpression of LCN2 in PC-3 cells is directly mediated through the 
NF-kB pathway and the JNK signaling axis (Fig. 3) [32]. Thus, TNF-α can induce LCN2 
protein expression and secretion in PC-3 cells. These data indicate strong evidence 
that besides the NF-kB pathway, the JNK signaling axis is responsible for the TNF-α-
mediated LCN2 induction and is a potential therapeutic target for PCa patients, consid-
ering that LCN2 has been recognized as a tumor-promoting component in the disease. 
In addition, according to recent research, selenium, zinc, and iron affect the production 
of pro-inflammatory cytokine (IL-1), which in turn stimulate inflammation in PCa cells 
(LnCaP). They also interfere with the production of arachidonic and linoleic acid metab-
olites, which have proinflammatory effects and promote the growth and spread of PCa 
[33]. Abnormalities in Ca2+ signaling have a big impact on PCa development. Accord-
ing to Yu and others, the IL-1/NF-kB pathway is responsible for the formation of the 
endolysosomal ion channel MCOLN2 (Mucolipin-2) PCa [34]. The interesting prospect 
of using MCOLN2 as a therapeutic target in the treatment of PCa is highlighted by this 
work.

Meanwhile, IL-1α could hinder the growth of the tumor by causing PCa’s G0–G1 cell 
cycle arrest [35]. IL-1β was reported to induce Th1 and Th17 to strengthen the antitu-
mor effect. IL-1β also exerts antitumor effects, which can prevent metastatic cells from 
colonizing in the metastatic place, thus inhibiting metastasis [27]. In addition, studies 
has shown that IL-1α and IL-1β act as tumor-specific Th1 mediators in the fight against 
cancer [36]. Regarding the protumor potential, it has been discovered that both IL-1α 
and IL-1β help with tumor angiogenesis and invasiveness as PCa develops [37]. It has 
been discovered that IL-1α and IL-1β might transform AR + PCa cells into AR-PCa 
cells, leading to castrate-resistant prostate cancer (CRPC) and therapy resistance [38]. 
According to research data, IL-1α may interact to create prostate-specific membrane 
antigen (PSMA) and PSA prostate clones [39].

Epithelium-specific ETS and ESE1 [or E74-like factor (ELF3)], two E26 transfor-
mation-specific (ETS) family members linked with PCa malignancy and a poor out-
come for patients, may be triggered by IL-1β through the NF-kB pathway [40]. IL-1β 
may also stimulate the production of endothelin 1 (ET-1) and matrilysin 1, both of 
which have been linked to the development of PCa [41, 42]. Evidence suggests IL-1β 
plays a significant role in the development of PCa by activating the mitogen-activated 
protein kinase (MAPK) pathway, which triggers the induction of IL-8, increasing the 
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potential for invasive growth and excessive proliferation of cells. Additionally, glu-
cosamine consistently blocks the IL-1-mediated activation of MAPKs, thereby reduc-
ing the production of IL-8 (Fig. 3) [43].

One of the most commonly mutated or deleted genes in human PCa is the 
tumor suppressor gene phosphatase and tensin homolog (PTEN). DNA methyla-
tion sequencing and RNA sequencing investigations on the prostate-specific PTEN 
knockout (KO) mouse prostatic adenocarcinoma model revealed that PTEN knock-
out mice displayed upregulation of inflammatory genes and immune response path-
ways, such as IL-1, and NF-kB [44]. These data showed that PTEN loss promotes 
inflammation over time, notably through genes that regulate responses to inflamma-
tion and immune-mediated pathways. Moreover, NF-kB RELA (p65), recent research 
suggests RELA-independent mechanisms influence IL-1-mediated AR inhibition 
in LNCaP cells [45]. Comparing LNCaP xenograft tumors to culture cells revealed 
a transition from an androgen-responsive to an androgen-nonresponsive state. Inhi-
bition of the AR and aryl-hydrocarbon pathways was discovered, and IL-1-mediated 
pathways were responsible for these modifications [46]. Moreover, according to Dahl 
et al., long-term IL-1 exposure favors the development of CRPC by encouraging PCa 
cell androgen and AR independence [47]. In response to short-term exposure to IL-1, 
MDA-PCa-2b cells suppress AR and AR activity, and they become resistant to long-
term exposure. While LNCaP and MDA-PCa-2b cells have largely conserved biologi-
cal and molecular responses to acute IL-1 signaling, including upregulation of NF-kB 
signaling and downregulation of cell proliferation, they have also evolved conserved 
and distinct molecular responses to chronic IL-1 signaling that may support or pro-
mote tumor progression [48].

A novel potential diagnostic and therapeutic target for PCa has been discovered 
as the prostate-specific G-protein-coupled receptor (PSGR) [49]. Based on recent 
research, PSGR may target IL-1β to modulate the MAKP and NF-kB signaling path-
ways involved in the formation of bone metastasis (Fig. 3) [50]. Furthermore, IL-1 has 
been linked to the stimulation of bone osteoclastogenesis. IL-1 was identified as one 
of the cytokines related to osteoclastogenesis and with associated metastasis-promot-
ing potential using a SCID mouse metastatic model of PCa [51]. In chondrocytes, IL-1 
induces apoptosis and the degradation of the cartilage matrix through miR-142-5p/
RUNX2, which is purportedly accelerated by exosomal PCa gene expression marker 1 
[52]. It provided a novel perspective on the genesis of osteoarthritis in PCa.

The prostate TME has potent immunosuppressive properties. Protumor response 
cytokines like IL-1α and granulocyte–macrophage colony-stimulating factor (GM-
CSF), which have been shown to increase cell migration and angiogenesis, showed 
increased expression in the microfluidic model of the prostate TME, suggesting that 
this platform could be a useful tool for researching immune cell phenotypes in in vitro 
TME [53]. Furthermore, in Iraqi males, the IL-1β polymorphism (rs16944) increases 
PCa risk with aggressive behavior [54]. In a further investigation, simulated micro-
gravity stimulated 3D development of PC-3 cancer cells and differential production of 
the cytokines IL-1α, and IL-1β, indicating their role in PCa cell growth and progres-
sion [55]. The above results suggest that pro-inflammatory IL-1 family members are 
crucial to PCa inflammation and may be targets for PCa therapy.
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IL‑4 and PCa

In particular, the significance of IL-4 and its receptor, IL-4R, in promoting a promet-
astatic phenotype in epithelial cancer cells has been documented [56–58]. Since anti-
body-mediated IL-4R neutralization and IL-4Rα deletion lowered metastatic lung tumor 
burden and growth, IL-4R could inhibit metastatic tumor growth [57]. Furthermore, In 
certain circumstances, once there are low amounts of androgen, IL-4 may activate the 
AR [59]. IL-4 has previously been linked to the development of PCa in various studies 
[58, 60–63].

About 7% of human genes are regulated by Yin Yang 1 (YY1), a C2H2 zinc finger 
nuclear transcription factor with great evolutionary conservation. YY1 is essential for 
controlling the inflammatory factors and tissue remodeling functions of macrophages 
[64]. A recent study found that YY1 was modulated by the IL-4/STAT6 pathway and 
that YY1 enhanced the development of macrophage-induced PCa by upregulating IL-6. 
Results showed that phase separation of the YY1 complex in M2 macrophages increased 
IL-6 expression by encouraging enhancer-promoter interactions, which accelerated the 
development of PCa (Fig.  3) [65]. Furthermore, tumor-promoting tumor-associated 
macrophages (TAMs) load TMEs. M2-like characteristics in most TAMs enhance tumor 
growth, immunoevasion, and metastasis. IL-4 and IL-13, which share IL-4Rα, polarize 
macrophages to an M2 fraction [66]. Dupilumab may change M2-like TAMs by skewing 
macrophages away from a protumor subtype by inhibiting IL-4Rα. These results pro-
pose targeting IL-4Rα to reduce protumor, M2-like macrophages as a cancer adjuvant. 
It is interesting to note that research has found that IL-4 inhibits PBMC production of 
the proinflammatory cytokines IL-1β, IL-6, and TNF-α [67]. As these cytokines have 
been reported to reduce cell viability and proliferation in LNCaP cells, reducing these 
cytokines may be one reason for the decrease in cytotoxicity. It can be concluded that 
IL-4 counteracts the cytotoxic effects of peripheral blood mononuclear cells (PBMC) on 
hormone-sensitive PCa cells and is involved in the immune escape of PCa.

It was demonstrated by Roca and others that IL-4-induced PCa3 cells proliferate sur-
vivin-dependently by activating the JNK pathway (Fig. 3) [61]. Moreover, based on pre-
vious research, IL-4 stimulates the phosphatidylinositol 3-kinase (PI3K)/protein kinase 
B (Akt) signaling pathways. The PI3K/Akt/NF-kB pathways may be accountable for the 
IL-4-induced AR activation in PCa [68]. IL-4’s promotion of AR signaling and PI3K/Akt 
and NF-kB signaling may explain the AR independence of PCa. In an androgen-deficient 
environment, IL-4 may signal PCa cells to survive by activating Akt and NF-kB signal-
ing, which prevents apoptosis (Fig. 3). AR-independent PCa has elevated levels of IL-4 
[68]. For advanced PCa, therapeutic strategies that target the IL-4, Akt, and NF-kB sign-
aling systems may provide an avenue for drug development.

IL‑6 and PCa

Cytokines, particularly IL-6, are functionally involved in every stage of PCa develop-
ment [25]. For instance, Han et al. [69] showed that IL-6 stimulated M2 macrophage 
polarization and was associated with the development of PCa cells. In addition, meth-
yltransferase histone as a human oncogene, histone-lysine N-methyltransferase 2D 
(KMT2D) is crucial for PCa. According to recent research, KMT2D monomethylates 
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H3K4 to increase IL-6 transcription and drive paracrine IL-6 signaling. This promotes 
PCa cell migration and proliferation while inhibiting PCa cell apoptosis (Fig. 3) [70]. 
These results imply that inhibiting KMT2D to target the IL-6 pathway and inhibit 
tumorigenic development may be a promising PCa therapy option. According to 
Binsaleh et  al., PCa patients with COVID-19 had higher levels of proinflammatory 
cytokines (IFN-γ, TNF-α, and IL-6) than non-COVID-19 PCa patients, suggesting 
that these inflammatory cytokines may have caused inflammation in COVID-19 PCa 
patients [71]. Furthermore, a Mendelian randomization trial revealed that persistent 
IL-6 may raise the risk of PCa [72].

LOX-1 is a key receptor for altered low-density lipoproteins (LDLs) such as oxidized 
(oxLDL) and acetylated (acLDL). Recent studies show that oxLDL/LOX-1 increases 
reactive oxygen species (ROS), activates NF-kB, produces IL-6, and activates STAT3, 
enabling CRPC to be resistant to enzalutamide. These findings suggest that LOX-1/
oxLDL-related new factors may enhance CRPC signaling [73]. IL-6 functions as a hub 
gene that may facilitate immune cell homing and differentiation in PCa [74]. In addi-
tion, gankyrin (also known as p28GANK, p28 or PSMD10), a component of the 19S 
regulatory cap of the 26S proteasome, has been identified by previous studies as an 
oncogene that contributes to oncogenesis, proliferation, drug resistance, and metas-
tasis in multiple types of malignancies [75]. IL-6-indcued STAT3 activation leads to 
the establishment of Gankyrin/non-POU-domain-containing octamer-binding pro-
tein (NONO)/AR/ High mobility group box 1 protein (HMGB1)/IL-6/STAT3 positive 
feedback signaling network, in which STAT3 is the primary transduction molecule, 
and increases CRPC transformation, androgen deprivation therapy (ADT) resistance, 
and gankyrin expression (Fig. 3) [76, 77]. Taken together, the evidence demonstrates 
that gankyrin is a valid prognostic marker and treatment option for PCa patients.

Neuropeptide substance P (SP) generates proinflammatory responses via the neuro-
kinin receptor (NK-1R) that contribute to various diseases, including cancer. Recent 
studies demonstrated that SP increased NF-kB target gene (IL-6) that regulate PCa 
cell inflammation, whereas aprepitant abolished the aforementioned effects [78]. 
These findings suggest that aprepitant may treat cancer-associated inflammation 
by modulating proinflammatory responses in PCa cells through the SP/neurokinin 
1 receptor system. In addition, gastric cancer high-expressed transcript 1 (GHET1) 
increases PCa cell proliferation. Recent research found that the lncRNA GHET1 
increased the movement of cells, their proliferation, and their resistance to pacli-
taxel-induced apoptosis and cell cycle arrest. GHET1 expression activates the ROS/
STAT-3/Twsit1 signaling pathway, increasing IL-6 production. Knockdown of GHET1 
overexpression could restrict cell movement and growth (Fig. 3) [79]. Paclitaxel resists 
GHET1, which may be used in clinics to treat cancer and drug resistance.

In PCa and the stromal TME, the IL-6/STAT3/Janus kinase (JAK) axis regulates 
angiogenesis, cell death, growth, and differentiation (Fig. 3) [80]. Based on an analy-
sis of the function of IL-6/STAT3 in PCa, phosphorylation of STAT3 accelerates the 
growth of PCa and controls the pathological activity of PCa cells [81]. Overall, fur-
ther clinical and preclinical research is required for the NF-kB/STAT3/JAK signaling 
pathways, triggered by IL-6, to be the focus of scientific research for better therapeu-
tic strategies.
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IL‑7 and PCa

Previous research has demonstrated that IL-7 influences tumor cell proliferation and 
transmission, lymphocyte production and differentiation in the thymus and bone mar-
row, and peripheral naive and memory T cell survival [82]. For instance, IL-7 increases 
the production of matrix metalloproteinase-3 (MMP3) and 7 and activates the Akt/
NF-kB pathway to boost the movement and invasion of DU-145 PCa cells [83, 84]. Seol 
et  al. found that overexpressing IL-7Rα in PC3 cells with lentiviral delivery increased 
PCa metastasis to bone in mice. In  vitro, IL-7 activation promotes tumor cell mesen-
chymal switch, movement, and invasion via STAT5, JAK, and extracellular signal-regu-
lated kinase (ERK) pathways, promoting epithelial–mesenchymal transition (EMT) and 
metastasis (Fig. 3) [85]. IL-7 may be a marker for low-recovery PCa patients. This addi-
tional information may help those who have been tested for PCa and are considering 
therapy determine its biological aggressiveness [86, 87].

IL‑8/CXCL8 and PCa

It has recently been demonstrated that PCa cells have higher levels of IL-8, significantly 
stimulating proliferation, migration, and invasion while suppressing apoptosis. IL-8 
serves mechanistically by promoting the NF-kB/STAT3/Akt axis. This discovery facil-
itates the development of novel therapeutic approaches [88]. Previous research found 
that CXCL8 was strongly expressed in PCa tissues and that this expression was con-
nected with the clinical stage. In addition, CXCL8 was shown to perform a synergistic 
function in both the onset and progression of PCa [89]. Similarly, IL-8 levels were signif-
icantly higher in PCa patients than in controls, suggesting that IL-8 may be a biomarker 
for PCa etiology and may also be an indicator for tumor progression [90]. In addition, 
based on investigations, upregulating CXCL8 expression via downregulating SFMBT2 
stimulates the infiltration of preadipocytes and TAMs in PCa cells [91].

The most prevalent sexually transmitted parasite is called Trichomonas vaginalis (Tv). 
According to evidence, the growth, spread, and motility of PCa cells increased when 
Tv [Trichomonad-conditioned medium (TCM)] medium was incubated with them. 
The proinflammatory cytokine IL-8 also increased [92]. These findings suggest that Tv 
infection may have a role in the development of a favorable milieu promoting PCa cell 
growth, invasion, and inflammation. In addition, similar evidence points to the role 
of the CXCL8 signaling pathway in regulating the activity and expression of AR. For 
instance, higher levels of CXCL8 expression were associated with significantly lower AR 
levels and the development of an increasingly severe disease in both primary and meta-
static PCa [93].

After the failure of ADT for prostatic adenocarcinomas, neuroendocrine differen-
tiation (NED), which is connected to wingless-related integration site (Wnt) signaling 
activation, may be considerably observed. According to recent research, ADT increased 
the production of Wnt4, whereas T cell factor (TCF7L1) was activated in PCa cells and 
enhanced the expression of IL-8 and CXCR2 [94]. These findings imply that IL-8/CXCR2 
pathway activation and disruption of AR signaling cause enhanced NED and malignancy 
in PCa in response to Wnt4/TCF7L1 induction. In addition, Li et al. found that CXCR2 
expression is associated with PCa development and tumor grade; therefore, inhibiting 
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it may help cure advanced therapy-resistant and metastatic PCa. The study found that 
NE cells express CXCR2 and CXCL8, indicating they are involved in EMT remodeling, 
angiogenesis, and invasion (Fig. 3) [95]. Moreover, it has been reported that IL-8 acti-
vates the mammalian target of rapamycin (mTOR) signaling pathway to protect PCa 
cells from GSK3-induced oxidative stress [96]. Likewise, M2 macrophages released IL-8, 
which supported prostate carcinogenesis through the STAT3/metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) pathway [97].

IL‑9, IL‑10 and IL‑11 and PCa

IL-9 has unknown pro- and antitumor effects [98], and IL-9 has diverse anti- and pro-
tumor effects that involve innate and adaptive immunity [99] as well as in PCa [100]. 
RM-9 tumors from stressed animals expressed more IL-9 in older animals. PCa-related 
IL-9 production alters with age and stress, as older, nonstressed mice have much lower 
IL-9 levels than younger ones [101]. In addition, IL-9 is also connected to the activation 
and recruitment of mast cells [102, 103]. Therefore, it is probable that IL-9 stimulated 
mast cell activation in ApcMin/+ mice to enhance prostate carcinogenesis [104]; In fact, 
mast cells may play a crucial role in establishing a prostatic environment favorable to the 
growth of cancer [105, 106]. Furthermore, a considerable increase in the inflammatory 
cytokine IL-9 in mouse serum was associated with the occurrence of prostatic neoplasia 
[104]. Feng et al. discovered a strong association between IL-9 levels at T2 and fatigue 
severity from T1 to T3 [107].

In recent years, research into the mechanisms of androgen activity in PCa has con-
tributed to a better understanding of the immunological regulatory processes played 
by androgens and AR in PCa patients. AR signaling has been shown to increase IL-10 
and trigger receptor expressed on myeloid cell-1 (TREM-1) signaling on macrophages, 
consequently promoting PCa cell motility and invasion (Fig. 3) [108]. Another investiga-
tion by Faupel-Badger et al. revealed a relationship between IL-10 and PCa risk and dis-
ease severity [109]. In addition, IL-10 has been identified as a potential new biomarker 
for PCa in the most recent study of serum multicytokines screening [110]. P13K in the 
CRPC xenograft increased the expression of IL-10 in the blood, but voluntary wheel 
running may decrease this expression [111]. A recent study found that coculturing 
exosomes from PC3 cells in estrogen receptors with macrophages activated by THP-1 
causes macrophages to polarize into the M2-type, which is characterized by high pro-
grammed death-ligand 1 (PD-L1) expression and IL-6 and IL-10 release [112].

In addition, TGF-1β signaling activates AP-1 and runt-related transcription factor 
2 (RUNX2) transcriptional pathways. RUNX2-suppressor of mothers against decap-
entaplegic (Smad) and Runx2-c-Jun interact to increase IL-11 gene expression, which 
promotes cancer-induced osteolytic bone disease [113]. IL-11 also serves as a tumor 
stimulator in PCa cells and stimulates stemness [114]. Furthermore, According to evi-
dence, LIM domain only two overexpression in prostate stromal cells, particularly 
peripheral zone derived stromal cells and cancer-associated fibroblasts (CAFs), may 
block miR-204-5p, which causes IL-11 to be upregulated [115]. Moreover, via IL-11R–
STAT3 signaling, increased paracrine production of IL-11 by stromal cells in the pros-
tate microenvironment promotes PCa cell growth and invasiveness (Fig. 3) [115].
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IL‑16 and PCa

According to earlier research, the polymorphisms of the IL-16 proinflammatory gene 
may have an impact on the prevalence of PCa in people of African origin [116]. Likewise, 
according to Hughes et  al., among African American males participating in PCa risk 
assessment, genetic diversity in the miRNA target site that encodes IL-16 may provide 
information about the onset of PCa diagnoses. This information may be used to develop 
specific PCa screening methods in the future [117]. In addition, IL-6 cytokine-related 
loci were strongly linked with PCa in a genome-wide association analysis [118]. In con-
trast, the findings of recent research from central China, none of the cytokine-related 
loci, including IL-16 rs7175701, and IL-16 rs11556218 were shown to be substantially 
linked to the development of PCa [119]. Furthermore, IL-16 is abundantly expressed in 
various tumor cells and favorably linked with Gleason score and clinical stage in pros-
tatectomy tumor tissues of PCa patients. Other cancers, particularly advanced cancers, 
can raise blood IL-16 levels [119]. Meanwhile, the PCa screening trial examined predi-
agnostic IL-16 blood levels and PCa risk in 932 Caucasian patients and 942 controls [72, 
120]. In Caucasians, no overall relationship between IL-16 and PCa was found [72, 120]. 
These results imply that there may be an ethnic variation in how these cytokine gene 
single nucleotide polymorphisms affect PCa in various nations, although further study 
is needed.

IL‑17 and PCa

There are six members in the IL-17 family: IL-17A, B, C, D, E, and F [121]. According 
to research, IL-17 may be a pathogenic condition that exacerbates inflammatory condi-
tions such as chronic systemic inflammation [122]. Based on a recent study by Janiczek 
et al., PCa patients have higher levels of IL-17A, IL-17F, and IL-17RC expression [123]. 
It is suggested that IL-17 may be a reference point for PCa immunotherapy research. 
In addition, PCa overexpresses the inflammatory cytokine IL-17. Steiner et  al. exam-
ined prostate tissues for inflammatory cytokines. Normal prostates rarely express IL-17, 
whereas both hyperplastic and cancerous prostates do so frequently. In cancerous pros-
tate samples, IL-17, IL-6, and IL-8 were strongly correlated [124]. Moreover, a recent 
study found that IL-17F activated the PI3K/Akt signaling pathway to enhance PCa cell 
malignant phenotypes, indicating a potential treatment target for PCa [125]. A Galician 
single nucleotide polymorphism (SNP) analysis found that the IL-17 gene polymorphism 
−197G > A increases PCa risk [126].

PCa is caused by Epstein–Barr virus (EBV)/human papillomavirus (HPV) coinfection. 
Recent research found that HPV/EBV-coinfected PCa cases have higher IL-17 expres-
sion levels than noninfected cases [127]. It was suggested that the regulation of cellu-
lar behaviors caused by the HPV/EBV coinfection may be involved in the pathogenesis 
of PCa. PCa-associated benign prostatic hyperplasia was associated with significantly 
higher IL-17F expression than healthy controls [127–129]. In addition, an enzyme called 
cathepsin K (CTSK), a cysteine protease, reduces extracellular matrix, and is linked to 
osteoclast-mediated bone degeneration. The IL-17/CTSK/EMT axis controls the growth 
and spread of tumors and induces M2 macrophage polarization in CRPC, indicating that 
CTSK might be a potential target for therapy (Fig. 3) [130].
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The level of glycolytic activity in PCa was associated with significant immune cell 
infiltration. The IL-17 signaling pathway may have a significant impact on how immune 
cell infiltration and tumor glycolysis interact [131]. Moreover, Propionibacterium acnes 
infection of the prostate organ may have a major impact on the infiltration of CD4+, 
IL-17+, and Treg cells into prostate tissue in patients with benign prostatic hyperplasia 
(BPH). Similarly, there is a correlation between P. acnes infection of the prostate organ 
and Treg cell infiltration in PCa patients’ prostate tissue [132]. Likewise, increased levels 
of CD33+ pSTAT3+ myeloid‐derived suppressor cells (MDSC), IL-17+ lymphocytes, 
and IL-10 mRNA expression may all contribute to the progression of BPH to PCa in PCa 
patients [133].

TGF‑β and PCa

It is well known that TGF-β has two roles in tumorigenesis: one as a tumor suppres-
sor in the early stages of cancer and another as a tumor promoter in the later, meta-
static stages [134]. The several stages of the PCa metastasis process have been linked to 
TGF-β, most notably EMT, primary tumor remodeling, angiogenesis, and the develop-
ment of tumors at the metastatic location [134–136]. PCa cells and the immune system 
release TGF-β. TGF-β prometastasizes the extracellular environment through complex 
tumor cell interactions with the stromal and extracellular matrix [137]. Type I and type 
II serine-threonine kinase receptors of TGF-β communicate using both conventional 
SMAD-dependent and non-SMAD-dependent mechanisms. Zinc finger protein SNAI1 
proteins, which enhance N-cadherin and vimentin and repress E-cadherin, are pro-
moted by TGF-β, thereby promoting EMT [138, 139].

The osteoblasts epidermal growth factor receptor (EGFR)–ERK signaling pathway was 
activated by PCa membrane-bound TGF-α and produced prostaglandin E2 (PGE2). In 
a mechanism-based manner, TGF-α linked to the membrane of PCa stimulates EGFR 
on osteoblasts through cell-to-cell adhesion during bone metastasis (Fig. 3). In an auto-
crine way, the active EGFR promotes bone formation by inducing ERK signaling, pros-
taglandin–endoperoxide synthase (COX-2) expression, and PGE2 production [140]. It 
has been determined that Golgi membrane protein 1 (GOLM1), which is abundantly 
expressed in PCa, is a key factor for EMT in several cancers. According to a recent study, 
GOLM1 stimulates PCa cell line migration and invasion (Fig.  3) [141]. Furthermore, 
When GOLM1 is downregulated or eliminated by the p-Smad inhibitor SB431542, 
it promotes EMT in PCa by modulating TGF-β1/Smad2 signaling, but TGF-β1 can 
then reverse this effect. Through activating the TGF-β1/Smad2 signaling pathway, the 
essential oncogene GOLM1 promotes EMT in PCa [141]. Thus, GOLM1 may be a PCa 
biomarker and prognostic indicator. PCa treatment requires an effective and specific 
GOLM1 inhibitor.

During the extravasation stage, PCa cell migration may be significantly modulated 
by shear stress caused by interstitial flow [142]. It was discovered that fluid shear stress 
caused PC3 cells to migrate more rapidly by raising the level of αvβ3 integrins, which in 
turn activated downstream signaling and raised the levels of MMP-9 [142]. The unique 
bioreactor presented here could be applied in the future to understand the basic mech-
anisms underlying the proliferation and migration of various cancer types. As well, a 
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study on GSEA discovered that it was linked to PCa carcinogenesis and the TGF-β sign-
aling pathway [143].

Immune cell infiltration (ICI) analysis showed that PCa patients with high ICI scores 
had numerous TGF-β signaling pathways, which may explain immunological tolerance 
[144]. Patients with PCa who had more CD8+ T cells that were specific for HER-2/neu 
(780–788) had better progression-free survival. More CD8+ T cells specific for human 
epidermal growth factor receptor 2 (HER2)/neu were linked to lower TGF-β and IL-8 
levels (780–788) [145]. According to these findings, CD8+ T cell immunity specific for 
HER-2/neu is indirectly correlated with IL-8 and TGF-levels (780–788). These findings 
suggest that more investigation into the link between CD8+ T cell immunity and HER-2/
neu (780–788) with IL-8 and TGF-β levels is needed to determine the therapeutic ben-
efit of monitoring disease progression in large patient cohorts.

TNF‑α and PCa

PCa patients had higher TNF-α level than healthy controls. PCa patients with increased 
inflammatory cytokines had advanced stages, metastases, and poor survival [146]. 
TNF-α also contributes to PCa cachexia. High TNF-α serum levels were linked to 
decreased reliability and higher mortality rates [147]. In addition, according to Zhou 
et al., PCa patients who have high serum TNF-α levels also have Gleason scores that have 
been upgraded [148]. According to a meta-analysis, the TNF-α-238/A polymorphism 
is unlikely to be a risk factor for PCa, whereas the TNF-α-308G/A polymorphism may 
significantly increase the risk of PCa in healthy volunteers. Further research, including 
considerable sample sizes, will be required in the future to elucidate the function of the 
TNF-α-308G/A and TNF-α-238G/A polymorphisms in prostate carcinogenesis [149]. 
Similarly, TNF-α-238G>A has been connected to an increased risk of prostate cancer in 
Indian men. They show that genes involved in inflammation (TNF-α) may accelerate the 
formation of PCa [150]. Through the activation of CCR7, TNF modulates the increased 
motility of tumor cells. A unique therapy approach for PCa patients involves focusing on 
TNF-α and eventually the CCL21/CCR7 axis [151].

CXC chemokines/CXCRs and PCa
CXCL1 and PCa

The various ways that CXC chemokines influence the initiation and development of PCa 
are depicted in Fig. 5. Angiogenesis-promoting ELR+ and CXC chemokines may boost 
prostate tumor aggressiveness. CXCR3 and CXCR4 moving from the cell surface to the 
cytoplasm may also cause protumor signaling and an alteration in aggression from mod-
erate to severe [152]. CXC chemokines and CXCRs expression patterns varied between 
PCa patients depending on the metastatic site, indicating that these molecules may be 
involved in organ-specific PCa metastasis [153]. Both PC-EVs and HC-EVs stimulated 
the expression of the chemokine CXCL1 in PCF-55 cells [154]. It is also demonstrated 
that CXCL1 promotes angiogenesis, motility, epithelial–mesenchymal transition, adhe-
sion, and metastasis in PCa cells [25]. In addition, through next-generation sequencing 
analysis, it was discovered that CXCL1 was modulated differentially during PCa [155]. 
As CXCL1 is important for both inflammatory and cancer-related processes, the results 
that have been given may help advance PCa-specific diagnostic tools.
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Furthermore, bacterial infections in the microenvironment can induce persistent 
inflammation that not only promotes the development of prostatic intraepithelial neo-
plasia  (PIN) and proliferative inflammatory atrophy but also accelerates the PIN pro-
cess by stimulating macrophages. According to additional studies in the area where PIN 
develops, PIN cells can attract macrophages by secreting intercellular adhesion mol-
eculeand CCL2, and these recruited macrophages can stimulate ERK and JNK signals 
in PIN cells by secreting CXCL1, which stimulates PIN cell proliferation (Fig. 5) [156]. 
Thus, bacterial-induced persistent prostate inflammation may be a factor in the devel-
opment of PCa. Altogether, these findings provide a molecular understanding of how 
persistent inflammation can activate macrophages, which can accelerate PIN progres-
sion throughout PCa formation. Moreover, PCa cells stimulated by T. vaginalis cause 
inflammation through cytokine–cytokine receptor signaling pathways and CXCL1 con-
centration, which encourage PCa cell growth and migration [157]. These results dem-
onstrate that T. vaginalis induces an inflammatory response in PCa cells in  vitro and 
in vivo in mouse models, which accelerates the proliferation of PCa cells. Similar to how 
T. vaginalis infection causes PCa cells to become inflamed, these chemokines (CXCL1, 
CXCR2) cause macrophages to migrate and become activated [158].

Moreover, inflammatory bowel disease (IBD) raises the risk of PCa. According to 
recent research, men with IBD tend to have prostate tumors with higher T and B cell 
counts. Chronic colitis-affected mouse models’ prostatic CD45+ leukocyte infiltration 
increased and CXCL1, and stimulated the NF-kB and Akt signaling pathways (Fig.  5) 
[159]. These data show that prolonged intestinal inflammation is associated with a pro-
tumorigenic, inflammatory, and rich prostatic phenotype, which may explain how IBD 
males acquire PCa.

With the exception of PC3, dilated cardiomyopathy (DCM) accelerated growth, motil-
ity, and invasion in all prostate cell lines. By using fluorescence-activated cell sorting to 
identify CXCR2-high levels in LNCaP and 22Rv1 cells, SB225002 reduced the growth 
that is brought on by DCM. By using SB225002, all line migrations were decreased. In 
the absence of the CXCR2 inhibitor, PC3 invasion was significantly decreased [160]. 
These results indicated that DCM enhances PCa growth, motility, and invasion, increas-
ing its metastatic potential. Plakophilin (PKP1) 1, an arm-repeat catenin, stabilizes cell–
cell adhesion by forming desmosomes. Recently, prostate PKP1 knockdown cell lines 
elevated CXCL1 mRNA and protein levels. PKP1 depletion in vivo recruits immune cells 
to create a tumor-specific milieu. This new cancer environment may be tumor suppres-
sive, accelerating tumor growth and progression [161].

CXCL2 and PCa

Overexpression of CXCL2 is identified in PCa [162]. Based on the most recent data, 
A-kinase interacting protein 1 positively correlates with CXCL1/2 and may serve as a 
biomarker for PCa disease monitoring and prognosis [163]. CXC chemokines, such as 
CXCL2, which act as hub genes in PCa tumors, may be responsible for immune cells 
homing to tumors and promoting immune cell differentiation (Fig.  5) [74]. Liu et  al. 
found that PC3 cells overexpressing tribbles homolog 1 (TRIB1) released CXCL2 and 
IL-8, which boosted THP-1 cell IL-12 and CD163 production. IKB-zeta ablation inhib-
ited TRIB1-induced CXCL2 and IL-8 decreases [164].
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B and T cell deficiency decreased aggressive PCa. The prostates of mice without 
adaptive immune systems had lower immune cell numbers and levels of the cytokines 
CXCL2, and TGF-β1. T and B cell deficiency protected against PCa in the Hi-Myc 
mouse [165]. Further research is required to determine the specific immune cell subsets 
that are crucial for prostate carcinogenesis, which could have an impact on the creation 
of innovative approaches for aggressive anticancer therapies. Moreover, research indi-
cates that CXCL1 and CXCL2 are novel NF-kB downstream targets in PCa [166].

CXCL3, CXCL4, and PCa

The primary factor in the tumorigenicity of PCa was the upregulation of CXCR3. It 
has been shown that overexpressing CXCR3 induces PCa cell migration and prolifera-
tion both in vivo and in vitro, which are connected to the development of malignancies 
through the ERK and Akt pathways [167]. These results imply that CXCL3 autocrine and 
paracrine pathways play a role in PCa formation by modulating the expression of spe-
cific genes associated with cancer progression. In addition, previous studies have shown 
that the CXCL3/CXCR2 axis stimulates the migration and invasion of PCa cells through 
the ERK signaling pathway (Fig. 5) [168]. These findings suggest that CXCL3 and CXCR2 
may promote PCa progression and metastasis. In addition, in vitro and in vivo, andro-
gen-regulated, prostate-enriched N-Myc downstream-regulated gene 3 (NDRG3) pro-
motes PCa cell growth. NDRG3 overexpression enhances CXCL3 expression, which may 
accelerate tumor angiogenesis (Fig. 5) [169].

CXC chemokines such as CXCL3, which may control accelerated angiogenesis in 
androgen-independent PCa, were confirmed in both in vitro and xenograft models by 
mining the proteome of PC3-conditioned media [170]. Likewise, prostate epithelial cells 
prompt stromal cells to secrete proinflammatory and cancer-promoting chemokine 
(CXCL3). Epithelial cells also generated IL-1 cytokines that caused the phenomenon. 
Interactions may cause prostatic inflammation and development in early PCa [171]. 
Through microarray analysis, significantly increased levels of IL-6 and its receptor, 
IL-6R, as well as PCa immune genes such as, CXCL3 was found. These genes may lead to 
the development of PCa and pro-inflammatory responses [172].

Recent studies show that CXCL4/CXCR12-induced receptor tyrosine kinases promote 
invasive signals and metastatic proliferation. Inflammatory mediators enable CXCL12-
induced PCa progenitors to adhere to the extracellular matrix. The PI3K pathway pro-
motes prostate tumor activators that exploit CXCR4 (Fig. 5) [173]. Thus, PCa analysis 
will be required for future research on CXC chemokines signaling.

CXCL5, CXCL6, and PCa

To promote “M2” macrophage polarization, TGF-β in TME altered c-Myc to boost 
CXCR4 expression and trigger the STAT3 pathway. When TGF is present, fibroblasts 
release more CXCL12, which binds to M2 macrophages’ CXCR4. In reaction to CAF 
interaction, M2 macrophages produced higher CXCL5, and this CXCL5 activates PCa 
EMT through CXCR2 and the Akt signaling pathway (Fig. 5) [174]. Sun et al. found 
that the inflammatory mediator CXCL5 may be a favorable prognostic factor for PCa 
[175]. In addition, in PCa tissues, mucosa-associated lymphoid tissue lymphoma 
translocation protein 1 (MALT1) is abundant. Following the nuclear translocation 
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of NF-kB subunits (p50 and p65) by MALT1, PCa cell expressed the genes for IL-6 
and CXCL5. Cell expansion, invasion, and tumor development were all induced by 
MALT1 (Fig. 5) [176]. Furthermore, SEPT5 downregulation enhanced tumor immune 
cells, notably CD8+ T cells. SEPT5 knockdown boosted CCL5, CXCL5, CXCL9, 
CXCL10, and interferon gamma receptor 1 production [177]. These results imply that 
SEPT5 may be a PCa prognostic biomarker and therapeutic target molecule. More-
over, the overexpression of CXCL5 regulated downstream-regulated genes such as 
ERK1/2, CXCL2, IL-18, and Bcl2, as well as tumor-related genes such as BAX and 
N-Myc. Both in vitro and in vivo, exogenous CXCL5 protein exposure or overexpres-
sion increased PCa cell malignancy [178].

Apoptosis-induced tumors expressed higher levels of CXCL5, a cytokine that pro-
motes inflammation. The growth of tumors was also delayed in animals deficient in 
CXCL5. Patients with metastatic PCa had higher levels of CXCL5 serum in comparison 
to those with localized PCa or controls, and peripheral blood monocytes isolated from 
patients with bone metastases of prostate cancer were more efferocytic than normal 
controls. These data indicate that CXCL5 may be a target for cancer treatments since 
myeloid phagocytic elimination of apoptotic cancer cells accelerates CXCL5-medi-
ated inflammation and tumor growth in bone (Fig. 4A) [179]. In addition, G-protein g 
alpha13  mediates GPCR signaling. Solid tumors, such as PCa, exhibit higher GNA13 
expression. By activating G-13-NF-kB, PCa cells produce CXCL5 [180].

Fig. 4  A Model of prostate cancer tumor growth in the bone microenvironment mediated by efferocytosis. 
Apoptotic cancer cells are engaged and efferocytosis by bone macrophages (MΦs), which activate Stat3 and 
NF-B (p65), resulting in the release of proinflammatory cytokines such as CCL5, CXCL1, IL-6, and CXCL5. CXCL5 
is involved in the chemoattraction of inflammatory myeloid cells such as CD11b+Gr-1+ and Ly6B+ cells, as 
well as the promotion of M2 (F4/80+CD206+ cells) polarization, all of which lead to chronic inflammation and 
immunosuppression that promote tumor growth. B CXCL13 influences the following signaling pathways: 
interactions with CXCR5. CXCL13 binding to CXCR5 activates the PI3K/Akt, Raf/MEK/ERK, Integrin-3/Src/FAK, 
and DOCK2/Rac/JNK pathways, all of which are important in cell survival, invasion, and growth
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The expression of CXCL6 is elevated in PCa [181–183]. CXCL6 synthesis increases in 
aged prostate stroma, stimulating fibroblast and epithelial development [184], and high 
NOTCH1 PCa expresses greater CXCL6 [185]. These results showed that CXCL6 signal-
ing causes PCa to grow by encouraging metastasis, angiogenesis, and chemoresistance 
(Fig. 5).

CXCL9, CXCL10, CXCL11/CXCR3, and PCa

Several CXC chemokines, including CXCL9, CXCL10, and CXCL13, are present in the 
prostate cancer microenvironment, suggesting that these genes may aid in the predic-
tion and interpretation of the prostate adenocarcinoma prognosis [186]. A study found 
that higher CXCL9 levels decreased T cell expression, which accelerated tumor growth 
in transgenic mice. CXCL9 overexpression reduced T cells in immunological organs and 
the tumor microenvironment, promoting PCa development [187]. Likewise, compared 

Fig. 5  PCa development is triggered by CXC chemokines. In PCa, CXCL1 and receptor (CXCR2) induce PCa 
cell proliferation via ERK/NF-kB, Akt, and JNK. CXCL2 mobility primarily regulates neutrophils, monocytes, 
lymphocytes, macrophages, B cells, T cells, CD8+ T cells, NK cells, etc., to induce immune cell differentiation 
and, via NF-kB, PCa formation. CXCL3/CXCR2 is upregulated in PCa and contributes to PCa cell migration, 
invasion, and growth through the ERK and Akt pathways and the molecule NDRG3. CXCL4/CXCR12 promotes 
invasive signals and metastatic proliferation via the P13K pathway. CXCL5/CXCR2 via Akt, NF-kB, and ERK1/2 
and the molecule MALT1 are critical for PCa cell expression, invasion, and tumor growth. High-NOTCH1 
PCa expresses greater CXCL6, which induces metastasis, angiogenesis of PCa, and chemoresistance. CXCL9 
attracts effector T cells, which play a key role in the inflammation and promotion of PCa cells. Likewise, 
CXCL10 recruits effector T cells, which also produce inflammation, and it also causes PCa cell migration and 
invasion through the NF-kB and TLR4/5 pathways. CXCL11 acts as a tumor suppressor in PCa. CXCL12/CXCR4/
CXCR7 induce in PCa cell promote growth and metastasis via MAPK, ERK, Akt pathways while in contrast, 
wt-p53 pathway inhibits the CXCR4 and CXCL12 in the interactions and inhibited the migration of PCa cells 
to the bones. CXCL13/CXCR5 are also up-regulated during PCa via the JNK, ERK, and NF-kB pathways, leading 
to promote PCa cell growth and invasion. The CXCL14 facilitates the EMT in the PCa via the NF-kB pathway. 
CXCL16/CXCR6 recruits the leukocytes via activation by FAK, P13K, PKC, NF-kB, ERK1/2 pathways, and protein 
GSK-3b, which promote motility, invasion, and metastasis of PCa. The up (↑) arrow symbol represents 
upregulation
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with the surrounding normal prostate, PCa tissue has a higher ability to produce T lym-
phocytes, which may be due to PCa cells secreting more CXCL9 during this process 
[188]. In laser-microdissected tissues, it was discovered that CXCL9 and CXCL11 were 
overexpressed and demonstrated distinction for advanced PCa [189]. According to these 
findings, CXCL9 upregulation was linked to the development of PCa tumors.

In addition to being a prognostic biomarker for some cancers, lysophosphatidic acid 
receptor 1 also contributes to PCa. According to a recent bioinformatic study, CXCL9, 
CXCR3, CXCL1, CXCR2, CXCL16, and CXCR6 are just a few of the CXC chemokines 
and receptors that are associated with lymphocytes. In PCa, CXCL9 and CXCR3 attract 
effector T cells (Fig. 5) [190]. Effector T cells work as inflammatory mediators [191].

According to bioinformatic analysis, PCa dramatically upregulates CXCL10 and 
CXCL11 [192]. In addition, metastatic PCa exhibits downregulation of Scm-like with 
four mbt domains 2 (SFMBT2). The role of SFMBT2 in PCa cell migration is examined. 
The authors claim that by upregulating CXCL8, CCL2, CXCL10, and CCL20, SFMBT2 
downregulation promotes preadipocyte and TAM infiltration. When SFMBT2 is low 
in PCa cells, NF-kB stimulates CXCL10. SFMBT2 regulation may therefore provide a 
new mode of therapy (Fig. 5) [91]. Moreover, it is essential for mediating the regulation 
of tumor cells in tertiary lymphoid organs (TLO) that immune cells (CXCL10+CD3+T) 
produce CXCL10 [193]. The results suggest that the prostate has a unique environment 
that promotes local CXCL10 synthesis, which is crucial for attracting CXCR3+ effector 
cells to tumor-associated TLO.

In addition, CXCL10 affects binding activity and immunological responses in PCa and 
COVID-19 infections, respectively. CXCL10 may predict COVID-19 mortality in PCa 
patients [194]. In addition, three human CXCR3 splice variants—CXCR3A, CXCR3B, 
and CXCR3-alt—have been identified; these variants function differently in various can-
cer cell types [195], and CXCL9, CXCL10, and CXCL11 are ligands for CXCR3. Moreo-
ver, research has shown that PCa tissues have increased CXCR3A mRNA levels while 
CXCR3B mRNA levels are downregulated. Upregulation of CXCR3B, but downregula-
tion of CXCR3A, restricts PCa cell growth and spread [196, 197]. It is therefore pos-
sible to predict that CXCL9, CXCL10, and CXCL11 may interact with CXCR3-A and 
activate its downstream signaling cascades, which would then decrease the expression 
of CXCR3-B at the posttranscriptional or posttranslational level. In light of this, the pat-
tern of CXCR3A and CXCR3B expression in human PCa may be used as a diagnostic to 
determine whether the cancer is invasive. In addition, through boosting cell migration 
and invasion, CXCR3B downregulation may switch PCa tumor metastasis from “stop” 
to “go” modifying CXCR3 isoform expression influences PCa cell migration and invasion 
(Fig. 5) [196].

Mouse prostatic epithelial cells are stimulated by pattern recognition receptor (RRR) 
ligands to produce inflammatory cytokines like TNF-α, IL-6, and CXCL10, and bacte-
rial components activate TLR4 and TLR5 signaling pathways to cause these chemokines 
in PECs (Fig.  5) [198]. By causing proinflammatory chemokines and cytokines to be 
released, TLRs can be stimulated to cause PCa inflammation. Although PKC inhibitors 
prevented the migration and cellular structure of CXCL10-activated PC3 cells [199].

An earlier study revealed that the PCa mouse model raised CXCL10 and CXCL11 
simultaneously [200]. Moreover, Kudryavtseva et  al. found that CXCL11 may be a 



Page 20 of 39Ullah et al. Cellular & Molecular Biology Letters           (2024) 29:73 

predictive marker for PCa patients based on bioinformatic research [201]. On the other 
hand, a recent study found that miR-206, which targets CXCL11 as a tumor suppres-
sor in PCa, negatively affected PCa cell growth and motility and delayed the cell cycle 
(Fig. 5) [202]. CXCL11 expression and CXCR3 and CXCR7 research are unknown, with 
a PCa hidden route investigation required. Clinicopathological and CXCL11 values were 
unavailable. The tumor growth molecular mechanism of CXCL11 needs further study.

CXCL12/CXCR4/CXCR7 and PCa

CXCL12 and its receptors, CXCR4 and CXCR7, may have a role in the development 
of PCa metastasis and the EMT process [6], while CXCR7 function suppression may 
reduce the ability of organ-confined PCa to spread [203]. A recent study found that 
CXCL12 was substantially elevated in arterial tumor endothelial cells (TEC) and that 
these specific microvascular abnormalities are significant prognostic indicators [204]. 
The authors also mentioned the relationship between CXCR4 and CXCL12 as a poten-
tial new target to prevent tumor angiogenesis in PCa. In addition, In PCa, CAFs had 
upregulated CXCL12, indicating that PCa inflammation and CAF morphologies were 
related to PCa progression. These findings may help with PCa diagnosis and the devel-
opment of alternative therapeutics [205]. Moreover, Wt-p53 inhibited the migration of 
PCa cells to the bones by altering the activity of CXCR4 and CXCL12 in the interactions 
between tumor cells and the bone marrow microenvironment [206]. These results imply 
that wt-p53/CXCR4 axis targeting may be a promising therapeutic approach to control 
PCa bone metastases.

Prior research has demonstrated that CXCR7 is more highly expressed in CRPC than 
in primary PCa [207, 208]. Notably, a study found that the binding of macrophage migra-
tion inhibitory factor (MIF) to CXCR7 triggers the Akt signaling pathway, promoting the 
growth and metastasis of CRPC tumors (Fig. 5) [208]. In addition, CXCR7 is one of the 
most highly upregulated genes in PCa that is administered with AR pathway inhibitors 
such as enzalutamide. CXCL12 and CXCR4, on the other hand, remained unchanged. 
According to functional analysis, CXCR7 overexpression and MAPK/ERK and/or Akt 
signaling are partially responsible for the ability of ARRB2 to eliminate enzalutamide 
resistance [207, 208]. CXCL12 and CXCR4 have a minimal impact on these effects. The 
findings of this study indicate that CXCR7 might be constitutively active and have a 
more significant impact on late-stage PCa than CXCR4, thereby providing a potentially 
effective therapeutic target. Likewise, via the CXCL12/CXCR4 axis, BMMSC advances 
PCa both in vivo and in vitro [209]. These results imply that BMMSCs may target PCa 
through the CXCL12/CXCR4 axis and increase PCa growth and movement both in vivo 
and in vitro.

Chemokines have been linked in a prominent study to treatment resistance and 
bone metastases in PCa through CXCR4 receptor activation. In a mechanical-logi-
cal sense, the soluble HH (SHH)/IL-6 paracrine signaling is further triggered by the 
bone-borne TGF-β-induced acetylated transcription factor Krüppel-like factor 5 
(Ac-KLF5), thereby increasing the secretion of IL-11. The mesenchymal phenotype 
and tumorigenicity maintenance depend on the SHH/IL-6 pathways. It was found 
that Ac-KLF5 was highly expressed in the bone metastases of PCa in both in  vitro 
and in  vivo models. This suggests that PCa is resistant to docetaxel. Therefore, by 
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focusing on KLF5 and the chemokine receptor CXCR4, the chemoresistance of PCa 
can be addressed (Fig. 2B) [210]. These findings support treating chemoresistant bone 
metastasis of PCa with Ac-KLF5/CXCR4 signaling inhibitors.

CXCL13/CXCR5 and PCa

Based on a microarray investigation, PCa in non-neoplastic cells results in an upregu-
lation of CXCL13 [211]. Previous research reported on the migration and invasion of 
CXCL13-stimulated PCa cells that were PI3Kp110-, Src-, FAK-, and DOCK2-depend-
ent and independent, indicating the existence of cell type- and stimulus-specific 
conditions known to promote PCa cell migration and invasion [212]. In androgen-
dependent LNCaP and PC3 cell lines, CXCR5 interacts with Gαq/11/Gβ3/Gγ9 
heterotrimers and CXCR4 in the absence of CXCL13. When CXCL13 is activated, 
it separates G proteins from CXCR5, allowing effector molecules to be activated. 
CXCR5 interacts with or sequesters signals that promote Gα13 protein expression 
and PCa cell motility when activated by CXCL13 [213]. Furthermore, according to 
research, CXCL13 plays an important role in several stages of PCa development. 
Cluster analysis revealed a group of proteins whose activation patterns were linked 
to CXCL13:CXCR5 interactions in PCa. The combined activation of PI3K/Akt, 
Integrin-β3/Src/focal adhesion kinase (FAK), and DOCK2/JNK signaling pathways 
was utilized to determine their relationship with CXCL13 signaling, regulation, and 
integration following CXCR5 (Fig.  4B) [214]. These findings suggest that CXCL13 
functions as a growth and/or cell survival factor for PCa cells and may have a role in 
the cellular signaling that controls PCa metastasis.

CXCL13 and CXCR5 signaling modules influence GPCR responsiveness, invasion and 
migration, immunological checkpoints, and innate immunity. Researchers discovered 
the key canonical channels and upstream regulators of CXCL13–CXCR5 expression and 
function. These findings point to the importance of the CXCL13–CXCR5 signaling axis 
in the PCa tumor immune microenvironment [215]. Moreover, CXCL13 promotes PCa 
cell growth via JNK signaling and invasion via ERK activation (Fig. 5) [216]. Mechanisti-
cally, Akt and ERK1/2 activation is induced by CXCL13 signaling via its corresponding 
receptor, CXCR5. Protein kinase C (PKC) and phospholipase C (PLC) activation may 
be mediated by CXCR5-coupled Gαq⁄11, which indicates that CXCL13 modulates JNK 
activation in LNCaP cells. However, DOCK2, a different protein that acts as an exchange 
factor for guanine nucleotides to activate Rac isoforms and promote cell growth, medi-
ates JNK activation in PC3 cells. CXCL13/CXCR5, which is involved in PCa metabo-
lism and is expressed in SPOP mutations, serves as a hub gene [217]. In addition, serum 
CXCL13, which also regulates PCa cell migration, integrin aggregation, and cell adhe-
sion, is strongly linked to prostate-specific antigen and prostatic dysfunction [218]. 
According to Garg et  al., PKCε overexpression works in conjunction with Pten dele-
tion to stimulate PCa in mice. Together, these modifications provide prostate epithelial 
cells with increased capacity for motility, invasion, tumorigenesis, and growth. They 
also stimulate the release of CXCL13, which is regulated by the non-canonical NF-kB 
pathway [219]. Furthermore, androgen-responsive CXCL13 participates in androgen-
induced PCa cell migration and invasion [220].
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CXCL14 and PCa

PCa purity and CD4+ T cells, CD8+ T cells, B, macrophage, dendritic, and neutrophil 
infiltration were associated with CXCL14 expression. The researchers additionally dis-
covered that PCa pathology T stage and immunological score were significantly corre-
lated with CXCL14 expression [221]. An earlier study found that CXCL14-expressing 
CAF and fibroblasts stimulated by CXCL14 upregulate NOS1. In CAF that expressed 
CXCL14, neuronal nitric oxide synthase (NOS1) was induced in response to oxidative 
stress, while nuclear factor erythroid 2-related factor 2 and HIF-1 transcription factor 
α signaling were also activated [222]. These findings identified NOS1 as an intervention 
target for CAF-directed cancer therapy and established critical elements of a signaling 
network that supports CXCL14-stimulated CAF’s protumoral activities.

A tumor metastasis suppressor known as tetraspanin CD82 is known to be down-
regulated in a number of metastatic tumors. According to a study, CXCL14 was the 
gene that was downregulated the most in PrEC-31 (+CD82) compared to PrEC-31 (−
CD82), while CXCL14 was highly expressed in (−CD82) [223]. The increased expression 
of CXCL14 in −CD82 cells may suggest a probable association between CXCL14 and 
CD82 in PCa carcinogenesis. In addition, CXCL14 was previously identified in an SNP 
analysis as a unique susceptibility gene for aggressive PCa development [224]. Further-
more, CXCL14 served as an RNA-binding protein for lncAY927529, and lncAY927529 
delivered by exosomes increased CXCL14 levels in ST2 cells. Which promote PCa cell 
growth and invasion by regulating the bone microenvironment [225].

It has been shown that the protein CXCL14 in exosomes (sEVs) stimulates M2 mac-
rophage polarization via the NF-kB signaling pathway, which facilitates EMT in PCa 
cells (Fig. 5). Although it did not impact PCa cell death, its downregulation prevented 
PCa cells from proliferating and invading [226]. Additionally, CXCL14 knockdown 
suppressed tumor growth in vivo. Collectively, exosomal CXCL14 facilitated M2 mac-
rophage polarization via the NF-κB signaling pathway and facilitated PC advancement.

CXCL16 and PCa

CXCL16, the only known ligand for CXCR6, is expressed in human osseous tis-
sue, and innate human PCa cells express and have high levels of the CXCR6 protein. 
CXCL16 induced migration and invasion in PC3 and LNCaP cells in vitro [227]. Simi-
lar to CXCL12–CXCR4, which has been proven to take part in PCa bone metastases, 
CXCL16–CXCR6 is expressed in human PCa and bone specimens [227]. As a result, 
this study shows that CXCL16–CXCR6 plays a role in the metastasis of prostate car-
cinoma, even though the mechanisms by which CXCL16–CXCR6 participates in and 
influences the invasive patterns of PCa cells need to be investigated further. CXCL16 
levels increased with ceramide levels in cohort studies, indicating that ceramides influ-
ence immunological responses in metastatic CRPC [228]. In addition, metastatic bone 
tissues had high CXCL16 expression. Several parameters related to CXCL16 levels in 
metastatic bone marrow of advanced PCa patients may predict bone metastasis. CXCR6 
and CXCL16 affect tumor metastasis [229]. When exposed to IL-1 and TNF-α, prostate 
epithelial cells significantly increased their synthesis of CXCL16, implying that inflam-
matory cytokines may also be involved in CXCL16 activation. CXCL16 promoted PCa 
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cell invasion and migration in vitro. This led to the conclusion that CXCL16 acts as a 
novel chemotactic factor for PCa cells via CXCR6 (Fig. 5) [230].

Mechanically, CXCL16 recruits mesenchymal stem cells  (MSCs) to tumors. Tumor-
derived CXCL16 interacts with MSC CXCR6 to modify MSCs into CAFs, which release 
significant amounts of CXCL12. CXCL12 maligns and reproduces cancer cells. EMT-
prostate cancer cells express more CXCR4. CXCR4 increases metastasis [231]. Further-
more, the CXCR6–CXCL16 interaction influences cellular adhesion and motility by 
activating Ezrin, aggregating αvβ3 integrins, and capping the leading edge of PCa cells 
in an FAK/PI3K/protein kinase C (PKC)-dependent manner. The activation of CXCL16 
alters cytoskeletal dynamics and promotes motility, invasion, and endothelial cell adhe-
sion, allowing PCa cells to spread throughout the body [232]. Cancer cells’ soluble 
(S)-CXCL16 secretion causes a positive feedback loop, either directly through interac-
tions with PCa cells or indirectly by creating an inflammatory milieu that promotes the 
growth of tumor cells [233]. Furthermore, CXCL16 from precancerous or malignant 
cells attracts leukocytes with CXCR6. These cells express CXCL16 and CXCR6 using 
TNF-α and IFN-γ. This positive feedback loop encourages inflammatory cell migration 
and proliferation, which promotes precancerous and malignant cell growth (Fig. 5) [234]. 
By phosphorylating glycogen synthase kinase-3 beta (GSK-3b), NF-kB, and ERK1/2, the 
CXCR6-CXCL16 axis promotes docetaxel resistance in PCa patients [235].

Prospective theranostic therapies regarding cytokines (interleukins) and CXC 
chemokines
In the past few years, cancer immunotherapy has emerged as a highly effective treat-
ment technique. A multitude of immunotherapy-based approaches, including cell-based 
therapies, cancer vaccines, monoclonal antibody utilization, cytokine therapy, and com-
bination therapies, have been applied to the management of PCa. Notably, several of 
these methods have demonstrated promising outcomes [236]. Based on an experimental 
study, it was hypothesized that a combination of microtubule-disrupting drugs and the 
direct oncolytic and anti-angiogenic effects of the IL-12-expressing NV1042 oncolytic 
herpes simplex virus could enhance anti-tumor efficacy in PCa treatment [237, 238]. 
Prior research has predominantly demonstrated that IL-1RN can suppress the produc-
tion of proinflammatory chemokines in response to TNF-α and IL-1β [239], Indicating 
that, apart from IL-1R1-mediated action, IL-1RN is implicated in other signal pathways. 
In addition, Morales and Emerson described an intralesional recombinant IFN-based 
trial for localized PCa. In this investigation, IFN-α was delivered directly into the pros-
tate. This phase I trial’s findings suggested that recombinant IFN-α had a positive impact 
[240]. In patients with CRPC, similar research was conducted with lower dosages of 
IFN-α-2b in combination with docetaxel [241], and the researchers concluded that in 
patients with CRPC, a low dosage of IFN-α2b might enhance the anticancer efficacy of 
docetaxel while maintaining a tolerable safety profile. Table 2 lists the most recent and 
comprehensive description of clinical and preclinical approaches that target cytokines, 
CXC chemokines, and CXCRs.

Galustian et al. used the coculture technique to confirm that PCa cells were more 
capable than noncancerous cell lines (PNT2 and WPMY-1) to boost IL-15-mediated 
growth and cytotoxicity of NK cells [242], claiming that the activation of NK cells 
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Table 2  Proinflammatory cytokines (interleukins) and CXC chemokine-targeted strategies in 
preclinical and clinical studies in PCa

Anticancer drugs/inhibitors Target Type of study Outcome/result

Antagonist (IL-1RN) CXCL1 and CXCL10 Preclinical CXCL1 and CXCL10 are inhibited 
by the secret IL-1RN produced 
by recruited TILs [239]

Tumor-infiltrating leukocytes 
(TILs)/CD11b−

CXCL1 Preclinical TILs/CD11b cells protect 
androgen-dependent cells 
against CXCL1 damage [260]

Lipocalin-2 (LCN2) knockout IL-1β Preclinical LCN2 deficiency leads to 
reduced IL-1β [261]

Arbutin IL-1β Preclinical Arbutin could significantly 
decrease IL-1β [262]

Germacranolides 1 and 2 IL-1β and IL-8 Preclinical Germacranolides 1 and 2 reduce 
IL-1β and IL-8 [249]

Rye whole grain and bran 
products

TNF-R2 Clinical The RP diet lowered the expres-
sion of TNF-R2 [263]

Gnetum gnemon IL-2 Clinical Reduce IL-2 [264]

Panax notoginseng IL-4 Preclinical Reduces IL-4 [265]

Resolvin D1 and D2 IL-4 and IFN-γ Preclinical RvD1 and RvD2 both inhibit 
LPS-IFNγ- and promote IL-4 
[266]

Androgen deprivation therapy IL-6 and IL-10 Preclinical IL-10 and IL-6 were significantly 
lower in ADT-sensitive patients 
[246]

Nexrutine and exercise IL-1β, IL-5, IL-12, and VEGF Clinical Both interventions reduced 
the concentrations of the men-
tioned cytokines[267]

Euterpe oleracea fruit IL-6 Preclinical Reduced IL-6 and induce IFN-γ 
[268]

GuBen-ZengGu granules IL-6 and TNF-α Clinical Reduce the serum levels of IL-6 
and TNF-α [269]

Docetaxel plus degarelix IL-6 and IL-10 Clinical Docetaxel plus degarelix reduce 
levels of IL-6 and IL-10 [270]

Mangiferin functionalized gold 
nanoparticulate

IL-6 and IL-10 Preclinical MGF-AuNPs enhance IL-10 and 
IL-6 [271]

IL-15 and ADU-S100 PCa cells Preclinical IL-15 and ADU-S100 analogs 
induce the activation of NK cells 
and the resulting death of PCa 
cells [242, 272]

Cyto-IL-15 IL-15 Preclinical Cyto-IL-15 leads to PCa growth 
delay [273]

6-Shogaol from dried ginger IL-6- And TNF-α Clinical/preclinical 6-SHO reduced IL-6 and TNF-α 
[274]

AgNPs of Annona muricata CXCL1/CXCR2 Preclinical AgNPs help to downregulate 
the CXCL1/CXCR2 axis [275]

Fucoxanthin CXCL5, TGF-β, IL6, MMP1, 
TIMP1, and TIMP2

Preclinical Fuco downregulated the expres-
sions of the mentioned genes 
[276]

Walterinnesia aegyptia venom 
(WEV) + silica nanoparticles

CXCL9/10/12/13/16
CXCR3/4/5/6

Preclinical WEV + NP decrease the 
mentioned CXCLs and their 
receptors [248]

Andrographolide CXCL11/CXCR3/7 Preclinical AG inhibits PCa CXCL11/
CXCR3/7 by targeting cell cycle 
regulators [277]

chloroform VEGF-A and CXCL-12 Preclinical MPc inhibit VEGF-A and CXCL-12 
[278]

MiR-206 CXCL11 In vivo CXCL11-targeting MiR-206 
suppresses PCa cell growth and 
migration [202]
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by the human body serves as a defensive mechanism against PCa. Furthermore, data 
suggest that Th2-type cytokines, such as IL-4, IL-5, IL-6, IL-10, and IL-13, might 
trigger antitumor responses by activating eosinophils and inducing the generation 

Table 2  (continued)

Anticancer drugs/inhibitors Target Type of study Outcome/result

Agaricus bisporus (white but-
ton mushroom)

IL-8 and VEGF Preclinical IL-8 and VEGF suppression by 
mushrooms may affect tumor 
growth [279]

Enzalutamide IL-6 and STAT3 axis Preclinical Inhibition of IL-6 and STAT3 axis 
[250]

IL-12 expressing NV1042 onco-
lytic herpes simplex virus

IL-2 Clinical/preclinical Effective method to improve 
antitumor efficiency in the treat-
ment of PCa [237, 238]

Recombinant IFN-α IFN-α Clinical Administered IFN-α straight 
into the prostate. A phase I trial 
found that recombinant IFN-α 
had a positive impact [240]

IFN-α-2b combined with 
docetaxel

IFN-α Clinical A low dose of IFN-α2b may 
enhance docetaxel’s anticancer 
properties [241]

Diosmetin IL-6 Preclinical Diosmetin inhibited IL-6 
and IGF-1-induced PKC/Akt 
phosphorylation. Diosmetin 
may change Akt and PKCα 
phosphorylation, inhibiting PCa 
cell growth and viability [280]

Chimeric antigen receptor 
(CAR) T-cell therapy

IL-7 Preclinical In xenograft models, natural 
killer group 2D ligand-targeting 
CAR T cells with IL-7 gene altera-
tion showed improved antitu-
mor effectiveness and longer 
overall survival (OS) [252]

E966-0530-45418 TGF-β Preclinical E966-0530-45418 reduces PCa 
metastasis by inhibiting CDK8 
activity, TGF-β1-mediated 
Smad3/RNA polymerase II linker 
phosphorylation, and Akt/
GSK3β/β-catenin signaling [281]

ZY-444 TNF signaling Preclinical ZY-444 targets TNFAIP3 via 
TNF signaling to decrease 
PCa growth and metastasis [282]

Receptor antagonist IL-1RA IL-1α and IL-1β Clinical IL-1RA may prevent IL-1α and 
IL-1β activity in PCa [283]

CXCR2 blockade TNF-α Preclinical CXCR2 re-educates mac-
rophages, releases TNF-α, 
induces senescence, and inhib-
its PCa development [284]

Endothelial cell-specific mol-
ecule-1 (ESM-1) knockdown

CXCL3 Preclinical ESM-1 inhibition decreased 
movement and expression of 
the angiogenic CXCL3 in PC-3 
cells [285]

CRISPR/Cas9-mediated dele-
tion of IL30

CXCL5 Preclinical IL-30 deletion greatly lowers 
CXCL5 expression in PCa cells 
[286]

FAK (PF-573228) or MAPKK 
(PD98059)

CXCL6, IL-6, and CXCL5 Preclinical Mesenchymal stem cells (MSC) 
proinflammatory cytokines/
chemokine phenotypes 
induced by IL-1 were sup-
pressed by FAK and MAPKK 
inhibitors [287]
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of antibodies, even though their primary roles are in host antiparasitic defense and 
allergy reactions. On the other hand, in cancer immunotherapy, Th1 responses may 
be more desirable to activate than Th2-dependent responses [243, 244]. In this regard, 
research using a mouse model of PCa xenografts revealed that IL-4 might promote 
the JNK pathway’s activation and the overexpression of survival. This anti-apoptotic 
protein could progress PCa [61].

Consequently, cytokines have also been demonstrated to be utilized in can-
cer immunotherapy; nevertheless, this approach has always had several challenges, 
such as beneficial dose modification and inefficient cytokine monotherapy [245]. For 
this reason, administering cytokines as part of cancer treatment might have serious 
adverse effects, similar to when the body is severely infected. Furthermore, because of 
the cytokines pleiotropic effects in the TME, systemic cytokine treatment has not had 
many therapeutic effects.

Research findings indicate that patients who responded positively to ADT had signifi-
cantly lower baseline levels of specific immune markers (IL-6, IL-10, and GM-CSF). At 
the same time, specific pro-inflammatory cytokines (IL-5, IFN-γ, and TNF-α) exhibited 
significantly higher levels throughout treatment than patients resistant to ADT [246]. 
These studies represent significant potential for predicting treatment outcomes for 
patients with metastatic PCa by employing immune-related circulating biomarkers, or 
cytokines, to predict ADT therapy. Furthermore, silica nanoparticles containing snake 
venom may inhibit the growth of human PCa cells and trigger apoptosis [247], as well as 
significantly reduce the levels of various CXC chemokines and their receptors. Simulta-
neously, chemokine-driven migration lowers the prevalence of PCa [248]. Furthermore, 
as a cytotoxic and anti-inflammatory drug, Kłeczek et al. [249] emphasized extracts of 
the above-ground blooming sections of Carpesium divaricatum, a plant species well-
known in traditional East Asian medicine. The results showed that the compound had 
selective cytotoxic activity against PCa cancer cell lines. By reducing the expression of 
IL-1β and IL-8, these extracts demonstrated a robust anti-inflammatory effect at subcy-
totoxic doses. The findings imply that type IV C. divaricatum germacranolides can have 
a solid anti-inflammatory impact at subcytotoxic concentrations.

The resistance of cytokines to chemotherapy, immunotherapy, and oncoprotein-
targeted medications continues to be the major challenge in oncology, impacting PCa 
patients capability to get successful therapy over a lengthy period [236, 250, 251]. 
According to recent studies, an alternate tumor marker called the natural killer group 2D 
ligand (NKG2DL) may serve as a target for PCa patients receiving traditional chimeric 
antigen receptor (CAR) T cell treatment. Both in vitro and in vivo, NKG2DL-targeting 
CAR T cells demonstrated significantly greater cytotoxicity against PCa. On the other 
hand, in xenograft models, the use of CAR T cells that target NKG2DL and have had 
their IL-7 gene modified demonstrated improved antitumor activity and longer overall 
survival (OS) [252]. CAR T cell trafficking, low T cell infiltration, inadequate CAR T cell 
persistence, and an immunosuppressive TME are all challenges associated with the use 
of CAR T therapies. CAR-T cell therapy is an example of an immunotherapy that utilizes 
the patient’s immune system to fight the cancer; it exhibits a potent antitumor response 
but is inhibited by immunosuppressive factors found in the TME. Hence, continuously 
developing therapeutic approaches to reverse immunosuppression is required.
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Based on available data, there need to be more current studies that specifically address 
the use of cytokines or CXC chemokines, either on their own or in conjunction with 
other medications or treatments. Investigating cytokines and CXC chemokines has led 
to promising results in preclinical, in vitro, and in vivo investigations; at this point, this 
area has not seen significant clinical application.

Directed immunotherapy cytokines serve a dual function in the onset and progres-
sion of PCa [251]. In circumstances of associated chronic inflammation, the formation 
of pro-inflammatory cytokines stimulates the infiltration of cytotoxic T lymphocytes 
(CTLs) into the tumor, whereas IL-1β and IL-2 cytokines boost the migration of immu-
nosuppressive MDSCs and Treg cells [251]. In addition, immunosuppressive PD-L1 
expression has been shown to be induced by TNF-α and IL-17 on the PCa cell surface, 
which contributes to immune resistance [253]. Immunosuppressive immune cells pro-
duce and secrete anti-inflammatory cytokines, including TGF-β and IL-10, which may 
suppress antitumor responses in PCa and lead to a poor prognosis [254, 255]. Conse-
quently, circulating levels of the anti-inflammatory cytokines IL-4, IL-6, and IL-10 were 
higher in individuals with hormone-refractory PCa [256] and linked to elevated PSA 
levels. Furthermore, it has been shown that in PCa patients, the combination of TGF-β 
and epidermal growth factor induces tumor cells to migrate to the bone. For tumor cells 
to evade the immune system, TGF-β can initiate the EMT process, inhibit antitumor 
responses, and reduce class I major histocompatibility complex expression [257, 258]. 
However, inhibitory immune cells and anti-inflammatory mediators in the TME  have 
consistently posed an enormous challenge for cancer experts. Cytokine release syn-
drome is a response to certain immunotherapy-based approaches, including monoclonal 
antibody therapy and chimeric antigen receptor (CAR) T-cell therapy. This syndrome is 
characterized by the aberrant synthesis and emission of inflammatory cytokines [259]. 
Consequently, cytokines can potentially exert a dual impact on cancer immunotherapy 
outcomes and immune responses.

These studies collectively lead to the conclusion that cytokines perform as a network, 
making identifying their role in various disease states challenging. These cytokines have 
dual effects on PCa: they can stimulate the immune system’s anti-tumor defense while 
promoting tumor growth and survival by reducing anti-tumor defense or worsening 
inflammation.

Conclusions and future prospectives
We attempted to shed light on the expression, underlying molecular mechanisms, 
origins, and critical roles of cytokines (interleukin), CXC chemokines, and CXCRs in 
PCa. IL-1, IL-6, IL-7/IL-7R, IL-8, IL-17, TGFs, and TNFs, as well as CXCL1–CXCL6, 
and CXCL8–CXCL16, all play important roles in PCa inflammatory response, meta-
static spread, angiogenesis, progression, and development. Inhibiting cytokines, CXC 
chemokines, and CXCRs prevents the emergence and progression of PCa, which may 
aid in PCa detection and treatment. In contrast to the current understanding of the role 
of various cytokines and CXC chemokines in PCa pathogenesis, some inflammatory and 
immunosuppressive cytokines and CXC chemokines can promote PCa progression.

The complex network of interactions between PCa and the cytokines and CXC 
chemokines is currently poorly understood, which may hinder the creation of new PCa 
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medications. The majority of cytokines and CXC chemokines are highly expressed dur-
ing PCa and aid in the pathogenesis of PCa by causing inflammation, but their molec-
ular bases have not yet been fully explored. The function of each of the inflammatory 
cytokines and CXC chemokines should be accurately and immediately addressed to 
ensure their translation into potential clinical consequences. These investigations will 
not only be of scientific interest, but they could also prove helpful in the future for the 
treatment of cancer patients.
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HMG1	� High mobility group
SP	� Neuropeptide substance P
NK-1R	� Neurokinin receptor
GHET1	� Gastric carcinoma high expressed transcript 1
ROS	� Reactive oxygen species
MST2	� MEN-SIN-TAN family kinases2
IFN-γ	� Interferon-gamma
PKCα	� Protein kinase C alpha
NKG2D	� Natural killer group 2 member D
CAR T cells	� Axicabtagene ciloleucel chimeric antigen receptor T cell
Tv	� Trichomonas vaginalis
mTOR	� Mammalian target of rapamycin
Wnt4TCF7L1	� Wnt family member 4/transcription factor 7-like 1
OS	� Overall survival
TIME	� Tumor immune microenvironment
EMT	� Epithelial–mesenchymal transition
MALAT1	� Metastasis-associated lung adenocarcinoma transcript 1
ESR	� Erythrocyte sedimentation rate
Ac KLF5	� Acetylated Krüppel‐like factor 5
FDA	� Food and Drug Administration
sCXCL16	� Soluble CXCL16
ADAM100	� A disintegrin and metalloprotease 100
NK cells	� Natural killer cells
LMO2	� LIM domain only 2
EBV	� Epstein–Barr virus
HPV	� Papillomavirus
MDSC	� Myeloid-derived suppressor cell
BPH	� Benign prostatic hyperplasia
PGE2	� Prostaglandin E2
TNFAIP3	� Tumor necrosis factor, alpha-induced protein 3
ELR+	� Glu–Leu–Arg+
AgNPs	� Green synthesized silver nanoparticles
AgNPs-F, AgNPs-L	� Ethanolic extracts of fruits and leaves
CRISPR9	� CRISPR-associated protein 9
AKIP1	� A-kinase interacting protein 1
ESM-1	� Endothelial cell-specific molecule 1
IGF-1	� Insulin-like growth factor 1
MALT1	� Mucosa-associated lymphoid tissue lymphoma translocation protein 1
SEPT5	� Septin-5
LPAR1	� Lysophosphatidic acid receptor 1
SFMBT2	� Scm-like with four Mbt domains 2
TMPRSS2	� Transmembrane serine protease 2
PECs	� Prostatic epithelial cells
BM-MSCs	� Bone marrow-derived mesenchymal stem cells
FAK	� Focal adhesion kinase
TIME	� Tumor immune microenvironment
NOS1	� Neuronal nitric oxide synthase
IL-1RN	� Interleukin-1 receptor antagonist
RP	� Rye products
LPS	� Lipopolysaccharide
IFN-γ	� Interferon gamma
TIMP1/2	� Metalloproteinases 1/2
WEV + NP	� Walterinnesia aegyptia venom + silica nanoparticles
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