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Abstract 

Osteoarthritis (OA), known as one of the most common types of aseptic inflamma-
tion of the musculoskeletal system, is characterized by chronic pain and whole-joint 
lesions. With cellular and molecular changes including senescence, inflammatory 
alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse 
outcomes such as pain and disability. CRISPR-Cas-related technology has been pro-
posed and explored as a gene therapy, offering potential gene-editing tools that are 
in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, 
we systematically review current studies on CRISPR-Cas technology for improving OA 
in terms of senescence, inflammation, and cartilage damage and summarize vari-
ous strategies for delivering CRISPR products, hoping to provide a new perspective 
for the treatment of OA by taking advantage of CRISPR technology.
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Introduction
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation 
of the musculoskeletal system, is characterized by defects of hyaline cartilage, synovial 
inflammation, subchondral bone loss, and tissue hypertrophy [1]. Its main clinical symp-
toms are chronic pain and whole-joint lesions, and eventually disability [2, 3]. The preva-
lence of OA has increased steadily because of obesity, trauma, and the aging population 
[4]. Despite its high prevalence, there are no drugs that can inhibit the progression and 
eliminate symptoms of OA absolutely, and medications recommended by guidelines 
usually have dose-dependent toxicity [5, 6]. Considering that OA has a high gene-related 
possibility, estimated at 40–60%, gene therapy may be able to provide more valuable 
ideas for the treatment of OA [7].

Currently, molecular biology, genetics, and genomics are facing a historic oppor-
tunity. Since clustered regularly interspaced short palindromic repeats (CRISPR) 
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was discovered in the 1980s, CRISPR and the CRISPR-associated system (Cas) have 
been rapidly developed into a third generation of gene-editing tools. Essentially, 
CRISPR is a defensive sequence within the prokaryotic genome, and Cas represents 
genes located on the CRISPR locus nearby [8]. In a broad sense, the core concepts of 
the CRISPR-Cas system are the CRISPR locus, the related Cas genes, and the RNA-
guided adaptive immune system encoded by related genes [9, 10]. As a type of RNA 
sequence, the CRISPR locus contains spacers originating from bacteriophages and 
extrachromosomal elements and is separated by sequences that are short, repeat, and 
can encode small nonmessenger RNA [11]. Generally, it can be divided into a leader 
region, repeat region, and spacer region. CRISPR RNA (crRNA) derives from precur-
sor CRISPR transcription through processing of nucleic acid endonuclease; it can pair 
with complementary target sequences by the spacer at the 5′ end and trigger specific 
disruption of an invading sequence by Cas nuclease from Cas genes [12]. Thus, the 
decisive characteristic of the CRISP-Cas system is the effectors composed of crRNAs 
and Cas proteins, with the ability to recognize and disturb targeted sequences [13, 
14]. Compared with conventional tools such as zinc finger nucleases, recombinases, 
transcription activator-like effector nucleases, and restriction enzymes, the CRISPR-
Cas system offers more advantages for use in OA therapy [15]. It has a more power-
ful ability to regulate gene expression and genome sequence, more precise insertion, 
knockout, and edition of targeted genes, and inducing more phenotypic protein [16]. 
Improved CRISPR-Cas systems can produce specific sequences rapidly and be used 
easily, promoting their application within gene therapy [11]. However, the applica-
tion of the CRISPR-Cas system requires clarification of the molecular biology and 
genomic mechanisms to identify optimal editing sites.

Although OA is a complex, multigenetic, and multitissue degenerative disease, 
researchers have explored its pathogenesis and structure degeneration comprehensively 
[17]. Senescence, inflammatory alterations, and the corresponding regulation of genes, 
proteins, and signaling pathways are key factors that induce the development of OA 
[1, 18, 19]. Once pathological signaling pathways are activated, changes such as exces-
sive apoptosis [20], autophagy [21], pyroptosis [22], hypertrophy [23], disturbance of 
metabolism [24], and abnormal differentiation [25] occur among chondrocytes. Com-
bined with the influence of inflammatory mediators (e.g., proinflammatory cytokines), 
processes of subchondral bone sclerosis, degeneration of extracellular matrix, produc-
tion of reactive oxygen species, and destruction of collagen are initiated [1, 26–28], and 
OA will develop and progress continuously, causing cartilage defects. Thus, OA is regu-
lated by multiple signaling pathways and results from deterioration of cell fate and the 
interaction of tissues such as cartilage and synovium. The signaling pathways and cor-
responding molecular products involved in these processes offer potential targets for the 
treatment of OA, enabling the use of gene-editing therapies, especially with the CRISPR-
Cas system, as potential tools for OA treatment.

In this review, we summarize the structure, mechanism, and function of the CRISPR-
Cas system. Besides, we provide recent insights into OA gene therapy from the aspects 
of cellular senescence, inflammation, and cartilage repair. The inclusion of up-to-date 
research is highlighted to summarize and predict potential developments. We also pre-
sent reviews of and insights into tools for delivering the CRISPR-Cas system.
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Overview of current therapeutic strategies for osteoarthritis
Both primary OA (caused by the degeneration of bone and cartilage tissue) and sec-
ondary OA (caused by trauma, inflammation, fracture, etc.) have a similar pathologi-
cal mechanism: Changes in molecules and the ECM increase the level of inflammatory 
cytokines and enzymes, which destroy cartilage structure and disturb the process of 
cartilage repair. Thus, cartilage will disappear, and the resulting direct friction between 
bones causes pain and even disability [29]. This dictates that the treatment of OA ulti-
mately comes down to the control of inflammation and the repair of damaged cartilage.

Until now, conventional strategies for preventing exacerbation of OA have been pri-
mary therapies such as weight control, exercise control, and trauma prevention [30]. 
Other conventional therapy aims to relieve the symptoms. For example, nonsteroidal 
antiinflammatory drugs (NSAIDs) are often used to reduce the pain of patients [31]. 
Besides NSAIDs, chondroitin sulfate is generally recognized as an effective nutritional 
factor that benefits cartilage. In addition to oral medications, intraarticular injections of 
lubricating agents, such as sodium hyaluronate, can reduce the increased interbone fric-
tion that occurs after injuries to articular cartilage, thereby relieving symptoms [29, 32]. 
For patients with severe OA, surgery is the last choice of treatment [33]. Effective strat-
egies include arthroscopic debridement, osteotomy, and ultimately arthroplasty. How-
ever, they carry the risks of iatrogenic injury, periprosthetic infection, and eventual joint 
revision [34–36].

To strengthen the effect of nonsurgical treatment and avoid the side effects and 
trauma of surgical treatment, as well as to maximize the fundamental solution for car-
tilage defects and other problems brought about by OA, cell therapies and gene thera-
pies (sometimes combined) have been proposed. Culturing autologous chondrocytes 
in vitro and injecting them into joints in the form of articular cavity injections for car-
tilage repair is a widely recognized option in recent years [37–39]. Meanwhile, owing to 
their multispectral differentiation, immunomodulatory function, low immunogenicity, 
and self-renewal ability, MSCs are becoming an emerging therapy that is being focused 
on to avoid passaging-induced chondrocyte dedifferentiation while taking full advantage 
of their important roles in tissue regeneration and repair in response to cartilage deficits 
caused by OA [40, 41]. Additionally, extracellular vesicles (EVs) secreted by MSCs have 
also been shown to promote ECM synthesis and cartilage repair [42]. Their therapeu-
tic function is mainly achieved by effectively regulating the expression levels of inflam-
matory genes, catabolic genes and synthetic genes, and immunomodulation of cells and 
microenvironment within the OA environment [43–45]. However, all such explorations 
must confront the dilemma of whether chondrocytes and MSCs can effectively colonize, 
proliferate, and form mature cartilage tissue in a difficult OA environment. Further-
more, the cost of cell therapy, the risk of additional surgery required to extract the cells, 
and the safety of clinical translation are all issues that should be balanced.

Gene therapies are designed to regulate the expression of damaged genes by regulating 
genes (alone, or in combination with cellular therapies) to achieve the goal of superior-
ity over cellular therapies or conventional therapeutic molecules. As knowledge of OA 
continues to grow, gene therapy is advancing with it. The most accepted gene-related 
therapeutic regimen is intraarticular delivery of various gene enhancers or inhibitors. 
For example, targeting IL-1β, which is involved in the pathological mechanism of OA, 
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lowering its expression level, or blocking its receptor are considered effective therapeu-
tic options. Based on this, IL-1 receptor antagonists are one of the most promising gene 
therapies; they can inhibit multiple signal transduction on the corresponding signaling 
pathway and effectively reverse disease progression in OA models [29]. Another idea is 
to highly express genes that promote cartilage synthesis in vivo. It has been shown that 
the use of insulin-like growth factor to promote proteoglycan synthesis in rabbit knee 
joints was effective for stimulating matrix synthesis in OA joints [46]. And related stud-
ies targeting SOX9, FGF-2, and hyaluronan synthase 2 have shown therapeutic effects 
on OA [47–49]. Currently, theories based on various types of RNA dysregulation lead-
ing to OA have greatly facilitated the development of RNA-related gene therapies [29]. 
Several studies have reported that intraarticular injections of nonviral or viral vector-
loaded miRNAs ameliorate pathological changes in OA [50–52]. And using small inter-
fering RNAs to specifically inhibit expression of MMP13, which plays a major role in 
OA progression, has also been shown to be an effective gene therapy option [53]. It 
should be noted that miRNAs are susceptible to off-target effects, whereas siRNAs are 
more susceptible to degradation, making their effects relatively unstable. In addition, 
the effects of utilizing RNAs are largely dependent on their effectiveness and specificity. 
These characteristics limit the application of noncoding RNA-based gene therapy [54]. 
In contrast, CRISPR-based approaches have shown greater potential owing to their high 
efficiency, weaker off-target effects, and versatility, which points to a new direction for 
gene therapy [7, 16].

Structure, mechanism, and function of the CRISPR‑Cas system
According to the current CRISPR-Cas loci and mechanisms, existing CRISPR-Cas sys-
tems can be divided into two classes [55]. Class I includes type I and III systems, com-
posed of heteromeric multiprotein effectors, and carry out biological function through a 
large multi-Cas protein complex [14, 56]. Conversely, type II, V, and VI systems belong 
to class II and are frequently used because they form a single multidomain effector [57, 
58].

CRISPR-Cas9, which recognizes and cleaves double-strand DNA (dsDNA) by employ-
ing single DNA endonuclease, is the most utilized tool that benefits from the specificity 
and codability of RNA [59]. It is composed of guide RNA (gRNA) and Cas9 proteins 
with nucleic acid endonuclease function; the gRNA guides Cas protein to target sites, 
where double-strand DNA is ruptured through the influence of the Cas protein, and is 
then repaired by the endogenous pathway [60–64]. The realization of this process relies 
on high GC proto-spacer adjacent motif (PAM, a noncoding short fragment on crRNA), 
trans-activating RNA (tracrRNA), crRNA, and Cas9. gRNA is synthesized by a combina-
tion of crRNA and tracrRNA, where the former identifies targeted sequences of DNA 
and the latter combines Cas9 protein [57]. Cas9 has a recognition lobe (REC) containing 
bridge helix and three helical domains, and a nuclease lobe (NUC) with a Topo domain, a 
HNH domain, a C-terminal domain (CTD), and a split RuvC domain. The RuvC domain 
is activated to cleave DNA strands that are opposite to complementary strands (i.e., 
nontargeted DNA), and the HNH domain is activated to cleave DNA strands that are 
complementary with crRNA (i.e., targeted DNA) [65]. Subsequently, Doudna and Char-
pentier fused crRNA and tracrRNA into a single RNA and named it single-guide RNA 
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(sgRNA) [66]. The improved CRISPR-Cas9 system provided revolutionary progress for 
gene therapy (Fig. 1 shows the timeline of the progress of the CRISPR-Cas system).

The mechanism of action of the CRISPR-Cas9 system can be summarized as follows: 
Cas9 cuts the sequences on the targeted DNA with the guidance of sgRNA, which pro-
duces double-strand break (DSB). The DNA will then be repaired as in autonomous 
cells via a process that involves nonhomologous end joining (NHEJ) and homologous 
recombination (HR) [12]. NHEJ directly shortens the distance between the ends of bro-
ken strands and then rejoins the broken strands with the help of DNA ligase, whereas 
HR prefers DNA exchange between homologous chromosome regions [67]. NHEJ and 
HR have different characteristics, and each has its own advantages and disadvantages. A 
specific comparison between NHEJ and HR is presented in Table 1 [68–72].

Besides Cas9, researchers have explored many new Cas proteins to develop favora-
ble type II CRISPR-Cas systems. For instance, Qi et al. introduced dead-Cas9 (dCas9) 
in 2013 [73]. Mutations in the RuvC and HNH domains on dCas9 cause Cas proteins 
to have only targeting function and lose their nuclease function. dCas acts as a tool for 
precise targeting and can form fusion proteins with other effectors [73, 74]. This allows 
the CRISPR-dCas9 system to target and regulate gene expression without causing DNA 
damage. Another explored approach is the CRISPR-Cas12 system, with 11 subtypes 
labeled from a to k [75]. Cas12a, 12b, and 12f are commonly used. Cas12a prefers recog-
nizing a high content of T nucleotide PAM, rather than a high content of GC like Cas9. 
It functions through a single RuvC domain and is guided by a single crRNA, whereas 
Cas12b is guided by crRNA and tracrRNA [75, 76]. In addition to the routine function of 
Cas proteins to cleave dsDNA, Cas12a, 12b, and Cas12f have the ability to trans-cleave 
single-strand DNA (ssDNA) without dependence on PAM. Thus, full utilization of the 
ssDANase activity of Cas12 can provide sensitive, specific, and rapid new solutions for 

Fig. 1  Timeline and overview of development of the CRISPR-Cas system

Table 1  A comparison between NHEJ and HR

NHEJ HR

Prerequisites for repairing No need for template Homologous DNA template

Phase for repairing All of the cell cycle Most efficient for late S and G2 phases

Advantages for repairing High frequency Allows specific point mutations and 
sequence insertions

Disadvantages Easier for random insertions and 
deletions

Low frequency
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gene therapy and molecular diagnostics [77–79]. In contrast, the CRISPR-Cas13 sys-
tem is a type VI system and has been identified as a potential tool targeting RNA [80]. 
Although the CRISPR-Cas13 system has been explored and divided into seven subtypes 
(a, b1, b2, c, d, X, and Y), all the types have similar single effector Cas13 proteins with 
two different RNase activities: one to target, cleave, and generate the RNA sequence, and 
the other to preprocess crRNA [81–83]. In summary, numerous CRISPR-Cas13 systems 
have been developed and applied in RNA degradation, live imaging, nucleic acid detec-
tion, and base edition [84], and further progress on the CRISPR-Cas13 system will pro-
vide a new gene therapy and gene-editing platform for OA.

Biological and biomaterial‑related delivery systems for the CRISPR‑Cas system
Although CRISPR-Cas has been regarded as a revolutionary technology for gene edit-
ing and transcriptional regulation since 2012 because of its unparalleled advantages such 
as precise editing of multiple targets, rapid generation of mutants, and the possibility 
of designing single guide RNAs (sgRNAs) [85–87], its components must be delivered 
under stringent conditions by special tools. Strategies to deliver CRISPR-Cas systems 
efficiently and safely have gradually become an issue that must be solved and innovated. 
The ideal delivery system for CRISPR components should be efficient, highly safe, stable, 
and nontoxic [88]. Conventional viral vectors are limited by oncogenicity, immunogenic-
ity, compositional constraints, mass production efficiency, and Cas expression lifespan, 
while for nonviral vectors, one needs to address issues such as rapid clearance, toxicity, 
biocompatibility, and release of active ingredients [87, 89]. In addition, a variety of abi-
otic delivery options are worth considering Several current delivery systems are summa-
rized in Table 2.

Viral delivery systems have the abilities to integrate into the host genome, produce 
sustained effects, and deliver compositions efficiently [90]. Among the variety of viral 
vectors, adenoviruses, adeno-associated viruses (AAVs), and lentiviruses play an 
important role in CRISPR-Cas-based genome-editing therapies and have been widely 
used in clinical models and trials [91]. As an 80–100-nm double-stranded DNA virus, 
adenovirus itself can carry up to 8  kb of exogenous DNA and enhance transfection 
of the CRISPR-Cas system through additional targeting signals [92]. In addition, 
adenoviruses can infect both dividing and nondividing cells and effectively minimize 
off-target effects and unintended mutations [91, 92]. In contrast, ideal AAVs have a 
transmission capacity of 4.1–4.9 kb and recombinant AAV must also contain articu-
lar regulatory elements for gene expression, so even though the vectors themselves 
may be much larger than the size of the CRISPR-Cas system, the packaging efficiency 
is severely reduced, and they cannot be used for extensive gene regulation [90, 93]. 
Another serious problem is that the presence of neutralizing antibodies against AAV 
in patients previously infected with AAV significantly reduces the transfection effi-
ciency [94]. The property of AAV to promote long-term Cas expression also increases 
the risk of off-target effects [95]. However, AAV is often used as an in  vivo trans-
fection system and exhibits tropism for different organs depending on the serotype 
and phenotype [90]. In general, the combination of capsid regulation and genomic 
regulation provides AAV serotype vectors that reduce the affinity of neutralizing anti-
bodies for drug-resistant reactions and increase the transfection efficiency [95]. The 
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intra-articular injection of adeno-associated virus, which expressed CRISPR/Cas9 
components to target genes encoding MMP13, IL-1β, and NGF, successfully achieved 
gene editing in a surgically induced OA mouse model [96]. Compared with adenovi-
rus and AAV, lentivirus, as a type of retrovirus, has low cytotoxicity and weak immu-
nogenicity, with little side effects on transfected cells [90, 97]. Although it also faces 
difficulties in off-target effects due to continuous Cas9 expression and high-precision 
genome editing, the use of selective integrase-deficient lentiviral vectors generated by 
integrase modification significantly reduces the risk of unintended mutations [98, 99]. 
For all viral vectors, the use of glycoproteins for viral surface wrapping modification, 

Table 2  Some current delivery systems for the CRISPR-Cas system

Delivery system Type of CRISPR-Cas 
system

Experimental model Effects and comments Ref.

AAVs Cpf1 Primary human hepato-
cytes

The mutation rates were 
estimated at around 12% 
of insertion/deletion 
(indel), with transduced 
human hepatocytes at 2 
weeks after transduction

[111]

Baculovirus dCas9-VPR and gRNA Rat adipose stem cells Successfully induced gene 
transfection and achieved 
efficient gene editing

[112]

Dendrimers Cas9 mRNA, sgRNA, and 
donor DNA

HEK293 B/GFP cells By optimizing the system 
for simultaneous delivery 
of Cas9 mRNA, sgRNA, and 
donor DNA, the delivery 
system via dendritic lipid 
nanoparticles enables 
editing of more than 
91% of cells, achieving 
integrated, concise, and 
efficient gene editing

[113]

Cas9 RNP 293 T cells Owing to the presence of 
boric acid, the vectors can 
bind to differently charged 
proteins simultaneously, 
effectively maintaining the 
activity of the delivered 
Cas9 and enabling effi-
cient CRISPR-Cas9 editing

[114]

Lipid nanoparticles Cas9 mRNA and sgRNAs HEK293/GFP cells The LNPs enabled up 
to ~ 80% gene editing 
in vivo

[115]

Cas9 mRNA and sgRNA Duchenne muscular dys-
trophy mice model

The LNPs induces stable 
genomic exon skipping 
and have shown promis-
ing therapeutic effects 
in mice. In addition, 
LNPs can target multiple 
muscle groups and are 
characterized by repeated 
administration and low 
immunogenicity

[116]

Micelles Cas9 mRNA and sgRNA Parenchymal cells in the 
mouse brain

Co-encapsulation of 
sgRNA with Cas9 mRNA in 
micelles prevents release 
of sgRNA upon dilution, 
thereby increasing the 
tolerance of sgRNA to 
enzymatic degradation

[117]
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or deletion of promoters or enhancers with terminal repetitive sequences to avoid the 
activation of relevant genes, are effective methods to improve the safety of transfec-
tion and delivery of viral vectors [90].

Nanoparticle delivery systems have revolutionized the field of genome editing in the 
context of the rapid development of synthetic vectors, biomaterials, and cell engineer-
ing. Nonviral vectors are less limited by packaging capacity and minimize immuno-
genicity [100]. At the same time, Cas delivered by nonviral vectors tends to be expressed 
transiently, reducing the probability of insertion mutagenesis and the risk of nuclease-
induced off-target effects [100, 101]. Lipid nanoparticles (LNP) artificially polymer-
ized molecular nanoparticles have been widely used and are recognized as mainstream 
[16, 90, 101]. Lipid nanoparticles are essentially amphiphilic, bilayer vesicle-like carri-
ers composed of various hydrophobic and hydrophilic molecules that mimic cell mem-
branes [102]. Owing to their efficient delivery ability and good biocompatibility, they 
have promising applications in the delivery field. LNPs are characterized as a targeted 
delivery system with cargo monitoring and reduced toxicity [103]. In particular, the ionic 
and polar head of cationic liposomes allows unstable nucleic acids with anions to better 
cross the cell membrane, making them highly sought after for gene delivery, especially 
nuclear transport [90, 101, 102]. Liposomes prepared by Han et al. using microfluidics 
can increase the encapsulation of terminal sgRNA up to 85% [104]. Based on the advan-
tages of high bioavailability, biocompatibility, long lifetime in blood circulation, and 
degradability of polymeric materials, the use of protein cores and polymeric encapsu-
lation of CRISPR-Cas system to form a nanodelivery system for effective gene delivery 
is considered to have good development prospects [105, 106]. Although artificial poly-
meric molecular nanoparticles could offer a new delivery system of gene therapy, it is 
still unclear whether they can realize their advantages in the circulatory system, as local 
injection is often considered for the treatment of OA.

Extracellular vesicles as the delivery system for genetic components has received 
increasing academic attention [88]. As functional materials secreted by various natural 
cells under different external or internal conditions, EVs can regulate biological pro-
cesses by themselves while offering effective delivery, targeted delivery, and biocom-
patibility through their phospholipid bilayer membranes and high-level messenger 
molecules on the surface [107–109]. Therefore, both artificially modified and natural EVs 
are reliable and are expected to deliver CRISPR-related components with high safety. 
Hybrid exosomes formed by membrane fusion of chondrocyte-targeting exosomes with 
liposomes entered the deep region of the cartilage matrix in OA rats, delivering the plas-
mid Cas9 sgMMP-13 to chondrocytes [110]. However, accurate delivery of components 
via EVs is problematic owing to various types of interference. Delivery of EVs based on 
the CRISPR-Cas systems is still in its infancy, and multiple issues need to be addressed: 
(1) the standardization and engineering of EV preparation, (2) the uncertain interac-
tions, pharmacokinetics, and biodistribution of EVs and intrinsic CRISPR components, 
(3) clarification of methods for administration of EVs, (4) bioregulatory functions due to 
their own bioregulatory functions, so one cannot ignore homogenization of EV delivery 
systems for different diseases and the trade-off between generalizing the types of EVs for 
broad categories of diseases or targeting development for each different disease, and (5) 
the need to consider organelle-specific EVs as a future research direction.
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With the identification of structures, exploration of mechanisms, and development of 
platforms (Fig. 2), the CRISPR-Cas system has become an emerging technology that is 
receiving more attention in the gene therapy field. The combined application of different 
CRISPR-Cas systems provides the possibility for various gene-editing strategies. In the 
OA gene therapy field, this revolutionary technology has sufficient potential for diag-
nosis, reversing cellular senescence, improving inflammation, and promoting cartilage 
repair.

Application of the CRISPR‑Cas system for cellular senescence in the process 
of OA
Cellular senescence, known as a key risk factor in OA, is caused by multiple physi-
cal or pathological processes such as DNA damage, telomere shortening, oxidative 
stress, mitochondrial dysfunction, and sustained cytokine activation [118]. Apoptotic 
resistance, degeneration of extracellular matrix (ECM), secretion of proinflammatory 

Fig. 2  The mechanism of the classical CRISPR-Cas system and the classification of CRISPR-Cas systems. 
CRISPR-Cas9 shears through different structural domains on the Cas9 protein and repairs the sheared DNA by 
both NHEJ and HDR to accomplish gene editing. In turn, CRISPR-Cas is divided into different kinds according 
to the Cas



Page 10 of 30Jia et al. Cellular & Molecular Biology Letters           (2024) 29:64 

molecules, and permanent arrest of proliferation are the common characteristics of 
senescence among various cellular types, being identified as the senescence-associated 
secretory phenotype (SASP) [119]. The accumulation of senescent nonreplicable chon-
drocytes will trigger inflammatory pathways, affect oxidative stress, inhibit energy 
metabolism in mitochondria, and destroy the balance between synthesis and elimination 
within cartilage homeostasis [120–123]. Preclinical studies have proved that removing 
the SASP through multiple gene-editing tools can attenuate the process of OA [124]. As 
an emerging gene-editing tool, CRISPR-Cas technology offers the possibility of effective 
validation of potentially relevant pathways and reversing cellular senescence phenotypes 
more efficiently and precisely.

Common senescence-related genes include telomerase-related genes that maintain 
chromosome stability and preserve telomere length [125], fibroblast growth factor (FGF) 
family genes that inhibit cellular senescence, oxidative stress, stem cell failure, and pro-
motes autophagy through multiple signaling pathways (e.g., insulin/IGF-1, WNT, p53/
p21, and forkhead box) [126, 127], forkhead box subgroup O (FOXO) family genes tar-
geting oxidative stress, DNA damage, autophagy, and metabolism [128], SIRT family 
genes that affect the stability of genome, chronic inflammation, homeostasis of energy, 
metabolism, mitochondrial signaling pathways, and interactions with multiple other 
signaling pathways [129–132], vascular endothelial growth factor (VEGF) pathway for 
vessel formation [133], etc. Since senescence-related genes have been extensively stud-
ied, chondrocyte-associated senescence genes that promote OA progression are gradu-
ally being validated. Recent studies have shown that senescent chondrocytes during OA 
progression have two robust endophenotypes. One is endotype-1 with high expression 
of forkhead box protein O4 (FOXO4), cyclin-dependent kinase inhibitor 1B (CDKN1B), 
and RB transcriptional corepressor like 2 (RBL2), while the other is endotype-2 with 
potential therapeutic pathways of vascular endothelial growth factor (VEGF) C and 
SASP [134]. The CRISPR-Cas system plays an important role in exploring and validating 
such potential pathways and therapeutic targets. Yes-associated protein (YAP), known 
as an actor in the Hippo signaling pathway, plays a key role in cartilage homeostasis 
and cellular senescence [135]. Regulation of its expression will affect the integrity of the 
nuclear envelope, the transduction of cGAS-STING signals, and the formation of the 
SASP [136]. Fu et  al. delivered a CRISPR-Cas9 system via lentivirus to knockout YAP 
in mice, verified its role in promoting the development of OA, and revealed the role of 
the YAP/FOXD1 axis in regulating cellular senescence as one of the major molecular 
mechanisms for OA progression [137]. The same protocol for exploring target genes was 
used to discover and validate the CBX4 gene by Liu et al. They utilized a CRISPR-Cas 
system to construct CBX4 knockout human mesenchymal stem cell (hMSC) models 
and found that deficiency of CBX4 leads to cellular senescence, whereas its overexpres-
sion alleviates cellular senescence and subsequent osteoarthritis through maintaining 
nucleolar homeostasis [138]. Meanwhile, Jing et al. added to the lack of genomic screen-
ing studies based on the CRISPR-Cas system by constructing a synergistic activation 
mediator (SAM) using CRISPR-based activation (CRISPRa) technology to screen for 
OA progression via relevant aging genes. The results showed that SRY-Box transcrip-
tion factor 5 (SOX5) can activate age-protective genes such as high-mobility group box 2 
(HMGB2) and attenuate cellular senescence by triggering epigenetic and transcriptional 
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remodeling. In a subsequent validation phase, they found that delivering SOX5 through 
lentivirus attenuated age-dependent OA in aged mice [139].

In addition to being used as a detected technical tool for potential sites, gene therapies 
based on the CRISPR-Cas system for different endophenotypes and corresponding gene, 
phenotypes, and signaling cascades have great promise. Conventional gene therapy for 
cellular senescence commonly means the introduction of exogenous complementary 
cDNAs into target tissues and cells to repair genes that have become defective [140]. 
With the development of the CRISPR-Cas system, gene replacement, polygene editing, 
and epigenetic modification therapy have become possible strategies to slow or inhibit 
aging, which cannot be achieved by conventional gene therapy. In the application of gene 
knockout, CRISPR/Cas technology eliminates the laborious process of synthesizing and 
assembling protein modules with specific DNA recognition ability. Moreover, compared 
with TALEN and ZFN technologies, the design and synthesis of gRNA in CRISPR/Cas 
require significantly less effort, while exhibiting lower toxicity than ZFN technology 
[141–143]. The aforementioned advantages have also been observed in the regulation 
of cellular senescence. By mimicking a similar mechanism of disease requiring wound 
healing, Varela-Eirín et  al. used the CRISPR-Cas9 system to specifically downregulate 
the expression of the gap junction channel protein connexin 43 (Cx43), which reduced 
the nuclear translocation of Twist-1 caused by the Cx43-mediated increase in gap junc-
tional intercellular communication (GJIC) and inhibited the formation of SASPs through 
the downregulation of p53, p16INK4a, and NF-κB to retard chondrocyte senescence 
and tissue remodeling [144]. As the influences of senescence signaling pathways do not 
exist in isolation owing to the interaction between multiple pathological processes such 
as inflammatory factor release and excessive reactive oxygen species (ROS) formation, 
CRISPR-Cas system gene therapy solely targeting senescence is not fully developed at 
present, and the core direction of use remains the exploration of possible and potential 
genes. Unlike the clearly defined inflammatory genes, genetic disease genes, or cancer 
genes in the common use scenarios of the CRISPR-Cas system, modifications of specific 
genes may lead to serious side effects or adverse reactions due to the complex signaling 
cascade of the senescent genes and the unclear mechanisms. Only senescence genes that 
have been identified after enough bioinformatics analyses, gene sequencing, and func-
tional tests make clear sense for treatment using the CRISPR-Cas system.

Application of the CRISPR‑Cas system for inflammation in the process of OA
Inflammation in the cartilage and synovial microenvironment has been recognized as 
a key factor in the progression of OA since the discovery of abnormally high levels of 
inflammatory plasma proteins in the blood and joint fluids of OA patients in 1959 [145]. 
High levels of complements, plasma proteins, inflammatory mediators, and cytokines 
are among the key features of OA [146]. For example, interleukin-1β (IL-1β), which is 
produced by chondrocytes, leukocytes, osteoblasts, and synoviocytes, can bind to IL-1 
receptor (IL-1R) and activate transcription factors through the NF-κB and MAPK sign-
aling pathways to regulate the inflammatory response, leading to the production of 
inflammatory mediators such as COX-2, PGE2, and NO and accelerating OA progres-
sion [147]. Additionally, tumor necrosis factor-α (TNF-α) is one of the most important 
inflammatory factors that stimulate inflammation in OA. By regulation of pathways 
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such as NF-KB and PI3K/Akt, it stimulates the production of matrix metalloprotein-
ase (MMP) -1, MMP-3, and MMP13 by cartilage, synovium, and subchondral bone 
layer-associated cells to break down cartilage collagen [147–149]. As a key inflamma-
tory mediator that can synergize with TNF-α, IL-6 initiates signaling cascades through 
the regulation of MAPK, SATA3, ERK, and other signaling pathways to promote OA 
progression [150, 151]. In brief, different inflammatory mediators have corresponding 
regulatory pathways, and genetic modulation of any targets on the pathway by using 
CRISPR/Cas system-related techniques has the potential to significantly affect the final 
OA progression. The multiple inflammation-related pathways are summarized in Table 3 
[24, 152–218]. Nowadays, as the implementation and development of disease-modifying 
OA drugs (DMOADs) are subject to a series of limitations [219], it is of great signifi-
cance to conduct CRISPR-based targeted therapy to target inflammatory mediators and 
related pathways during the progression of OA.

Owing to the upregulation of IL-1β during the OA process, Zhao et al. tried to ablate 
IL-1β to ameliorate its progression [96]. After delivering a targeting CRISPR-Cas system 
with an adeno-associated virus (AAV), histology and μCT analyses were performed. The 
study demonstrated that CRISPR-mediated destruction of IL-1β significantly remitted 
the symptoms of posttraumatic osteoarthritis (PTOA). The same targets and similar edit-
ing strategies were confirmed by Karlsen et al. [220]. Meanwhile, Dooley et al. identified 
and targeted the functional structural domain of IL-16 by using the CRISPR-Cas system, 
and RNP complexes containing recombinant Cas9 coupled to guide RNA were deliv-
ered to cells via electroporation [221]. This study demonstrates the regulatory role of the 
CRISPR-Cas system in targeting inflammatory factors for chondrogenic differentiation. 
To address the problem of impaired cell regenerative capacity due to the development of 
inflammatory conditions in the microenvironment of PTOA, Bonato et al. improved the 
concept of cartilage tissue engineering through the CRISPR-Cas system [222]. The study 
provided multivalent protection to inhibit signaling that activates proinflammatory and 
catabolism of NF-κB pathways by targeted knockdown of TGF-β-activated kinase 1 
(TAK1) in cells by CRISPR-Cas9. TAK1-konckout chondrocytes could efficiently inte-
grate into natural cartilage even under proinflammatory conditions. Besides, results 
demonstrated that TAK1-knockout chondrocytes secrete less cytokines, which in turn 
reduces the recruitment of proinflammatory M1 macrophages. This type of targeted 
CRISPR-Cas-engineered chondrocytes (cartilage tissues) for inflammatory conditions 
represents a new option for OA treatment. Notably, owing to the persistence of inflam-
matory factors in the OA synovium, inflammation-related changes in the microenviron-
ment also affect a variety of autologous cellular strategies by promoting fibrocartilage 
deposition [223]. In addition to the engineering of autologous chondrocytes by alter-
ing inflammation-related genes, another promising approach is to combine mesenchy-
mal stem cells (MSCs) with the CRISPR-Cas system to attenuate inflammatory signals 
that promote ECM degradation, especially targeting IL-1Ra [223–225]. Another com-
mon CRISPR-Cas9-edited inflammation-associated stem cell is the induced pluripotent 
stem cell (iPSC) to improve immunomodulation of arthritis. CRISPR-Cas9-edited iPSCs 
targeted loss of IL-1R, thereby preventing IL-1-induced inflammatory responses and 
subsequent tissue degradation [226]. Recently, an engineered iPSC with a dynamic nega-
tive feedback loop was constructed using CRISPR-Cas9 technology and mouse iPSCs by 
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Table 3  Inflammation-related signal pathways in the progression of OA

Pathway Related genes Inflammatory 
mediators

Sites of 
functions

Pathological 
mechanisms

Refs.

AMPK pathway ERK1/2 IL-1β, IL-6, LIF, 
MMP-1 MMP-
3, MMP-13, 
ADAMTS-4, PGE2, 
NO

Cartilage Downregulating 
of type II collagen 
and aggrecan 
gene expression, 
enhancing catab-
olism, reducing 
cartilage extracel-
lular matrix (ECM) 
production in 
chondrocytes

[152, 153]

P38 IL-1β, IL-6, 
MMP-1, MMP-13, 
ADAMTS-4, PGE2, 
NO

Cartilage Enhancing catab-
olism, reducing 
cartilage extracel-
lular matrix (ECM) 
production in 
chondrocytes

[152, 153]

JNK IL-1β, IL-6, 
MMP-1, MMP-13, 
ADAMTS-4, 
ADAMTS-5, VEGF

Cartilage Enhancing catab-
olism, reducing 
cartilage extracel-
lular matrix (ECM) 
production in 
chondrocytes

[152, 153]

AMPKα IL-1β, TNF-α, 
MMP-3, MMP-13

Cartilage Enhancing carti-
lage catabolism 
and promoting 
chondrocyte 
apoptosis

[24, 154, 155]

c-Fos/AP-1 c-Fos/AP-1 IL-1β, IL-6, Cartilage
Osteophyte

Enhancing carti-
lage destruction 
and osteophyte 
formation

[156]

Focal adhesion 
pathway

FAK IL-1β, IL-6, IL-8, 
TNF-α, COX-2

Cartilage
subchondral 
bone

Enhancing 
subchondral 
bone deteriora-
tion and cartilage 
degeneration

[157–159]

Hic-5 IL-1β, TNF-
α, MMP-13, 
ADAMTS-5

Cartilage Enhancing carti-
lage catabolism

[160, 161]

Integrinα5β1 IL-1β, TNF-α,
MMP-1,
MMP-2, MMP-3,
MMP-10, MMP-
13,
PGE2, NO,
ADAMTS-5

Cartilage Decreased 
proliferation 
of cartilage 
producing cells, 
chondrodyspla-
sia, disorganized 
articular cartilage, 
and growth plate 
abnormalities

[162, 163]

FoxO3A FoxO3A IL-1β, TNF-α,
MMP-3,
MMP-13,
iNOS

Cartilage Inhibiting the 
progression of 
cartilage damage

[164, 165]

FGF pathway FGF2 IL-1β, IL-6, IL-8, 
TNF-α, MMP-9, 
MMP-13,
MCP-1, CCL2,
ADAMTS-5

Cartilage Promoting matrix 
degradation, 
anti-anabolism, 
and catabolism, 
enhancing carti-
lage destruction

[166–169]
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Table 3  (continued)

Pathway Related genes Inflammatory 
mediators

Sites of 
functions

Pathological 
mechanisms

Refs.

HIFs pathway HIF-1α IL-1β, IL-6, TNF-α,
MMP-13,
ADAMTS-5,
iNOS, VEGF, PGE2, 
NOS

Cartilage
Synovium

Potentiating 
the synthesis of 
ECM, preventing 
cartilage degen-
eration

[170, 171]

HIF-2α IL-1β, IL-6
MMP-1, MMP-3, 
MMP-9, MMP-
12, MMP-13, 
ADAMTS-4, NOS2,
COX2

Cartilage Enhancing carti-
lage destruction

[171–173]

Hippo-YAP YAP IL-1β, TNF-α,
MMP-3,
MMP-13,
ADAMTS-4,
ADAMTS-5

Cartilage Attenuating carti-
lage destruction

[174, 175]

JAK/STAT path-
way

JAK/STAT​ IL-1β, TNF-α, IL-4, 
IL-6, IL-10, IL-12, 
IL-13, IL-23,
MMP-1, MMP-3,
MMP13,
ADAMTS-4, 
ADAMTS-5

Cartilage Promoting ECM 
degradation 
and reducing 
type II collagen 
expression in 
chondrocytes

[176, 177]

mTOR pathway mTOR IL-1β, IL-6, TNF-α,
MMP-3,
MMP-9,
MMP-13,
COX-2,
iNOs,
ADAMTS-5

Cartilage
subchondral 
bone
Synovium

Enhancing osteo-
phyte formation, 
subchondral scle-
rosis, osteophyte 
formation and 
synovial inflam-
mation
Enhancing 
autophagy and 
inhibiting the 
apoptosis of 
chondrocytes

[178, 179]

NF-κB pathway RelA/p65 IL-1β, IL-6, 
TNF-α, MMP-1, 
ADAMTS-5, NOS2, 
COX2

Cartilage syn-
ovium

Enhancing carti-
lage degradation, 
aggrecan loss, 
and cartilage 
erosion

[180–183]

NF-кB1/
p105p50

IL-1β, IL-6,
TNF-α

Cartilage Enhancing carti-
lage degradation, 
aggrecan loss, 
and cartilage 
erosion

[184, 185]

IκB IL-1β, IL-6,
MMP-13

Cartilage Syn-
ovium

Enhancing carti-
lage catabolism

[181, 186, 187]

IKKα/β IL-1, NOS2, COX2,
MMP-13, 
ADAMTS-5

Cartilage Inhibiting 
IKK activity 
significantly, 
preventing IKB 
phosphorylation,
enhancing chon-
drocyte catabo-
lism and cartilage 
degeneration

[181, 186, 188]
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Table 3  (continued)

Pathway Related genes Inflammatory 
mediators

Sites of 
functions

Pathological 
mechanisms

Refs.

NFκB/PI3K/AKT IL-1β, IL-6, TNF-α,
MMP-1, MMP-13,
ADAMTS-5,
NO,
PGE2

Cartilage Enhancing carti-
lage catabolism 
and degenera-
tion

[152, 178, 189]

NF-κB/ELF3 IL-1β, IL-6, TNF-α, 
LPS, COX2, iNOS, 
MMP-13

Cartilage Inducing the 
expression of 
matrix-degrading 
enzymes, regulat-
ing chondrocyte 
catabolism,
enhancing carti-
lage degradation

[190–192]

NF-κB/Notch1 IL-1β, IL-6,
IL- 8,
TNF- α

Cartilage Impaired 
synthesis of 
cartilage-specific 
extracellular 
matrix, enhanc-
ing cartilage 
catabolism

[152, 193, 194]

PPAR PPARα/γ IL-1β, TNF-α, 
MMP-1, MMP-3, 
MMP-9, MMP-13, 
AGEs, NO, PGE2

Cartilage
Synovium

Inhibiting 
catabolism and 
inflammatory-
related
factors, attenuat-
ing cartilage 
damage

[195–197]

PGC-1α PGC-1α IL-1β, IL-8, TNF-α, 
MMP-13, COX-2

Cartilage Regulating the 
metabolic abnor-
malities, inhibit-
ing chondrocyte 
apoptosis

[164, 198]

SIRT SIRT1 IL-1β, TNF- α, 
MMP-13, 
ADAMTS-5

Cartilage Inhibiting 
catabolism

[199, 200]

SIRT3 IL-1β, TNF- α
MMP-3, MMP-13, 
COX2, iNOS

Cartilage Inhibiting inflam-
mation and 
apoptosis, pre-
venting cartilage 
damage

[201, 202]

SIRT6 IL-1β, IL-4, IL-8, 
TNF-α,
MMP-2,
MMP-9,
COX2, PAI-1

Cartilage
Synovium

Inhibiting ECM 
degradation, pre-
venting cartilage 
damage

[203–205]

TAK1 TAK1 IL-1β, IL-6, TNF-α,
MMP-1
MMP-3,
MMP-13,
VEGF,
COX-2,
PGE2

Cartilage
Synovium

Enhancing carti-
lage destruction, 
synovial inflam-
mation

[206–208]

TGFβ /BMP BMP2 IL-1, TNF- α, 
MMP-13

Cartilage Inhibiting carti-
lage degenera-
tion

[209, 210]

BMP7 IL-1, IL-6,
IL-10,
MMP-1,
MMP-13

Cartilage Inhibiting carti-
lage degenera-
tion

[211–213]



Page 16 of 30Jia et al. Cellular & Molecular Biology Letters           (2024) 29:64 

Brunger et al. [227]. By adding IL-1Ra or soluble TNFR1 (Tnfrsf1a) genes downstream of 
the Ccl2 promoter, iPSCs can synthesize anticytokines under IL-1 or TNF-α stimulation 
in a self-regulatory fashion and effectively inhibit inflammation in a self-regulatory man-
ner. The model has already been used for inflammation in animal models of rheumatoid 
arthritis (RA) [228]. Considering that OA and RA are also osteoarticular inflammatory 
diseases involving the synovium and joints, this scheme may provide a new direction for 
gene inflammation therapy of OA. With the growing understanding of the mechanisms 
of inflammation and corresponding immune regulation, CRISPR-Cas9-mediated Treg 
therapies have improved arthritis treatment, although the transmission, lifespan, and 
plasticity of these cells in vivo are unknown [229].

In summary, the use of CRISPR-Cas9 technology to (1) directly knock down overex-
pressed inflammation-related genes in existing cells, (2) engineer delivered chondro-
cytes by inflammation-related gene edition, (3) perform gene edition of undifferentiated 
stem cells to make them antiinflammatory to cope with the postdifferentiation inflam-
matory milieu, and (4) edit various genes of effector cells that perform immunomodula-
tory functions in inflammatory environments are the directions of OA gene therapy for 
inflammation.

Table 3  (continued)

Pathway Related genes Inflammatory 
mediators

Sites of 
functions

Pathological 
mechanisms

Refs.

TGFβs IL-1, IL-6,
TNF- α
MMP-3,
MMP-9, MMP-13,
ADAMTS-5

Cartilage Counteracting 
the suppression 
of proteoglycan 
synthesis

[211, 214, 215]

TLRs TLRs IL-1β, TNF-α, IL-
6,IL-8, IL-12, IL-17, 
CCL5, NO

Cartilage Increasing 
the shift from 
anabolism to 
a catabolism, 
enhancing carti-
lage degradation

[152, 216]

Wnt pathway β-catenin IL-1β, IL-6,
TNF-α
MMP-1, MMP-3,
MMP-13,
ADAMTS-5

Cartilage Enhancing carti-
lage degradation

[217]

Wnt-3A IL-1β,
MMP-1, MMP-3, 
MMP-13

Cartilage Attenuating 
catabolism

[168, 217]

Wnt-5A IL-1β,
MMP-1, MMP-3, 
MMP-9, MMP-13

Cartilage Anti-anabolic 
and enhanc-
ing catabolism, 
inhibiting type II 
collagen

[152, 217]

Wnt-7A/β-
catenin

IL-1β,
MMP-1, MMP-3, 
MMP-13

Cartilage Inhibiting type II 
collagen

[152, 168, 217]

Wnt-7B/β-catenin IL-1β, IL-6,
TNF-α,
MMP-1, MMP-3, 
MMP-13

Cartilage Enhancing carti-
lage destruction

[217, 218]
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Application of the CRISPR‑Cas system for cartilage repair in the process of OA
Cartilage defects are the most critical feature of OA progression [230]. Owing to the 
complexity of cellular components in the microenvironment in which articular cartilage 
resides (e.g., chondrocytes, immune cells, endothelial cells, synoviocytes, adipocytes, 
mesenchymal stem cells, etc.), the repair of cartilage defects is comodulated by the inter-
communication of multiple cytokines [231]. In particular, dysfunctional chondrocytes 
that have undergone a series of stimuli such as senescence and inflammation release 
excessive amounts of protease matrix-degrading enzymes (typically composed of MMPs 
and ADAMTSs) in response to persistent stimuli in the OA environment, which induces 
proinflammatory factors to be released from neighboring cells and further enhances the 
activity of these enzymes, ultimately contributing to the persistence of low-grade inflam-
mation and local tissue damage [232]. On the basis of the existence of the vicious circle 
in the microenvironment described above, cartilage defects become increasingly severe, 
and the repair of cartilage tissue will be severely impeded. More importantly, although 
articular cartilage is durable, it lacks blood vessels, resulting in poor regeneration and 
limited intrinsic healing [233]. Existing cartilage repair strategies include microfractures, 
autologous chondrocyte cell transplantation, biomaterial-based scaffolding techniques 
for cartilage repair, and various tissue engineering techniques. However, there has not 
yet been a technique that meets all the requirements for successful cartilage healing, i.e., 
embodying appropriate bioactivity, structure-function relationships, and ECM organiza-
tion relationships [231]. Thus, combining gene therapy, cell/tissue engineering, and bio-
materials as crosslinking projects may provide a potential direction.

Among the various types of cartilage repair concepts that have emerged in recent 
years, the utilization of MSCs is currently one of the most promising ideas [234]. As 
research has clarified that chondrocytes are one of the many types of cells that differenti-
ate from MSCs [235], several current studies are exploring how to appropriately engi-
neer MSCs to adapt them to the needs of cartilage repair. One of the prevailing ideas in 
this regard is to reprogram cells to give them special abilities [234]. CRISPR-Cas-based 
introduction of exogenous genes and regulation of gene expression levels and engineer-
ing of MSCs for regenerative medicine has grown significantly. The core idea of engi-
neering MSCs using CRISPR-Cas is to replace the diseased cells and integrate them into 
the target tissue to achieve a therapeutic effect while avoiding an inflammatory response 
[236]. MSCs have the differentiation potential to receive physical, chemical, and biologi-
cal stimuli for lineage transformation and ultimately directed differentiation, and the 
genes, transcription factors, microRNAs, and signaling pathways involved in the whole 
process will be activated or inhibited, which facilitates the application of the CRISPR-
Cas system [237–239]. For example, RNA-guided nucleases (RGNs) in combination with 
the CRISPR system can be targeted to increase the expression of antiinflammatory fac-
tor genes in order to delay the progression of arthritis [240]. Aggrecan, type II collagen, 
and SOX9 are considered to be the major transcription factors involved in the differen-
tiation of MSCs into chondrocytes [232, 237, 241], which can be targeted to enhance 
the potential of MSCs for cartilage repair. The use of CRISPR-Cas9 technology can also 
delay telomere shortening and reduce histone deacetylation as well as DNA methyla-
tion [242–244]. Owing to its capability for multigene editing, it can be used to promote 
chemokine receptor expression to increase MSC homing and adhesion to target tissues 
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while having an anti-aging effect [242]. These studies show great promise for genome 
editing by the CRISPR-Cas system in engineering stem cells for cartilage repair thera-
peutic applications, but several ethical issues regarding the possible ethical implications 
of cytogenetic manipulation still need to be resolved before its use in clinical practice.

In addition to improving aging and suppressing local inflammation to slow the pro-
gression of osteoarthritis and enhance cartilage repair, another important idea is to 
maintain chondrocyte homeostasis, enhance differentiation of chondrocytes, and reduce 
apoptosis of extant chondrocytes and breakdown of differentiated cartilage components. 
Nowadays, various types of RNA have been used as potential therapeutic targets. Based 
on microRNA 140 (miR-140) known as a chondrocyte-specific endogenous gene regula-
tor associated with osteoarthritis, Chaudhry et al. highly efficiently edited products tar-
geting miR-140 gene editing were obtained using two sgRNAs in combination with dual 
RNP-mediated CRISPR-Cas9 transfection [245]. The results indicate that this targeted 
removal of miR-140 can significantly improve the expression levels of a variety of genes 
in chondrocytes, especially for genes that require high removal levels to observe signifi-
cant expression differences. Nguyen et al. focused on LncRNA DANCR, which induces 
differentiation of human synovial-derived stem cells into cartilage. By leveraging the 
superior ability to edit targets and upregulate expression of dCas9 compared with con-
ventional Cas9, they successfully induced the activation of DANCR in adipose-derived 
stem cells after screening by packaging dCas9 and the corresponding gRNA against 
DANCR in viruses and delivering them, which provides a new idea for the repair of car-
tilage defects [112]. Additionally, since MMP13 was identified as a major factor affecting 
type II collagen content, numerous studies have focused on how targeted knockdown of 
the MMP13 gene can ameliorate type II collagen loss. Sedil et al. used a CRISPR/Cas9-
mediated gene editing strategy to reconstruct human chondrocytes lines and achieved a 
stable reduction of MMP13 expression in chondrocytes. The reduction of total MMP13 
secretion by CRISPR/Cas9 indirectly reduced the degradation of ECM and increased the 
concentration of type II collagen [246]. Meanwhile, to solve the decomposition problem 
of CRISPR-Cas therapeutic molecules during delivery and to enhance the therapeutic 
effect, Liang et al. used cartilage-targeted exosomes for direct delivery to knock down 
the MMP13 gene and achieved a more significant therapeutic effect [110]. The publica-
tion of this study suggests that CRISPR-Cas therapy has stepped into new territory. The 
classical targets also include aggrecan and type II collagen. The study confirmed that the 
use of dCas9 to induce dual overexpression of the two can effectively achieve the deposi-
tion of sGAG and type II collagen, provide better support for the ECM, control chon-
drocyte growth and differentiation, and better regulate the cell phenotype [247, 248]. 
And essentially, the original purpose of CRISPR-Cas was to modify mutated genes to 
fundamentally alter the various types of hereditary diseases and cancers that result from 
genetic mutations. The use of gene mutation therapy based on this idea to achieve the 
realization of gene upregulation or the correction of mutations during cartilage repair 
is a new idea. Nonaka et al. used CRISPR to repair a functional single-base mutation in 
transient receptor potential vanilloid 4 (TRPV4). The mutation leads to an increase in 
calcium ions and ultimately to ectopic dysplasia. The experimental results demonstrated 
that the mutant group showed significantly accelerated chondrogenic differentiation and 
SOX9 mRNA expression [249].
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Recently, it has been increasingly recognized that OA is also a mitochondrial disease 
[250]. Mitochondria from diseased chondrocytes show a significant increase in mass, 
reduced capacity of antioxidant enzymes, decreased activity of respiratory complexes, 
and overproduction of reactive oxygen species (ROS) and reactive nitrogen species 
(RNS) compared with healthy cells [251–253]. Current studies demonstrate that the 
changes are highly correlated to mutations in mitochondria DNA (mtDNA) [254]. Once 
the mutation occurs, it will easily generate proteases that lead to mitochondrial oxida-
tion and phosphorylation, resulting in mitochondrial dysfunction and damage [255]. In 
addition, mtDNA is susceptible to exogenous stimulation and has a high probability of 
mutation [250]. Although mitochondria have the function to repair their own mtDNA 
through a series of ways such as double-bond break repair and base excision repair, it 
is not realistic to maintain mitochondrial homeostasis under extreme environments 
(e.g., OA) through this fragile self-repair ability [256, 257]. Once such damage reaches a 
threshold, mtDNA damage will lead to mitochondrial pathological phenotypic changes 
and lasting impairment of physiological functions, causing disruption of metabolism 
within chondrocytes [258, 259]. Gene editing targeting mitochondria to treat OA has 
better prospects, such as targeting mitochondria with peptide nucleic acids comple-
mentary to mtDNA templates to inhibit replication of mutant sequences [260–262], 
using mitochondria-targeted restriction endonucleases to alter DNA specificity and 
reduce genomic mutations [263], using zinc finger enzymes to recognize and eliminate 
the effects of mutations [264, 265], etc. The emergence of the CRISPR-Cas system offers 
more potential for mtDNA editing, and repair offers even more promising possibili-
ties. There have been studies using CRISPR-Cas9 to target COX1 and COX3 in mtDNA 
to achieve mitochondrial membrane potential disruption and cell growth inhibition 
[266]. However, owing to the natural barrier effect of the mitochondrial bilayer mem-
brane structure on sgRNA and the off-target risk of CRISPR itself, its further application 
needs more exploration [250, 267]. Although the therapeutic application of mitochon-
drial genome editing in OA is still relatively unstudied, it is possible to target mutant 
mitochondrial genes leading to OA-associated oxidation by correcting altered pheno-
types through CRISPR or by integrating suitable genes, even involving differentiation or 
regeneration gene sequences [250].

Prospects and conclusions
Since the emergence of CRISPR-Cas technology, it has played an important role in many 
fields such as the life sciences, medicine, and bioengineering, boasting unique advan-
tages such as high precision, efficiency, simplicity, and broad applicability from thera-
peutic interventions to agricultural enhancements. However, the following challenges 
still need to be solved: (1) off-target effects of CRISPR and subsequent safety issues, (2) 
crosstalk caused by the complex gene regulation of OA and the still-unspecified multi-
ple potential target genes, and (3) inefficiency due to gene editing of individual chon-
drocytes. Orthopedic researchers are working hard to apply this cross-generational tool 
to their relevant fields. Although its large-scale applications are currently limited to 
tumors, or congenital or genetic diseases, some researchers are still hoping to broaden 
the boundaries of its use to address the increasing severity of OA and its underlying 
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cartilage repair problems, with a view to conquering the “cancer that never dies.” Given 
that OA occurs and progresses because of cellular senescence and apoptosis under natu-
ral or stressful conditions, as well as inflammation, including trauma, this paper reviews 
the relevant mechanistic pathways and the current applications of CRISPR-Cas technol-
ogy in reversing OA-associated cellular senescence, improving the inflammatory micro-
environment, and thus promoting cartilage repair (Fig. 3). In general, the main methods 
of CRISPR-Cas technology for OA gene therapy are (1) in vivo injection of the CRISPR-
Cas system to change the phenotype of existing cells or reduce the formation of related 
harmful metabolites, (2) in vitro gene editing of chondrocytes, synoviocytes, or various 
types of senescent cells, which are then reimplanted into organisms for therapeutic pur-
poses, and (3) engineering of undifferentiated stem cells, such as MSCs, to endow them 
with the ability to repair the inflammatory microenvironment (Fig. 3) or differentiated 
stem cells, such as MSCs, to endow them with antiinflammatory, anti-aging, and rapid 
directional differentiation into chondrocytes, so that they can survive under the extreme 
environment of OA and rapidly differentiate into chondrocytes for repairing damaged 
cartilage, and (4) genetically editing the mitochondrial DNA of damaged chondrocytes 

Fig. 3  An overview of strategies for OA treatment based on the CRISPR-Cas system. The CRISPR-Cas system 
treats OA through three main pathways: inhibiting release of senescence-associated factors and regulating 
senescence-associated immune processes, implanting gene-edited stem cells and chondrocytes in vivo to 
enhance their function, or modulating the inflammatory pathways involved in the process of OA
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to improve or even reverse the energetic homeostasis of the damaged cells, to maintain 
the cellular lifespan. Owing to ethical issues, fundamental embryo editing to create an 
“OA-free” population is unavailable. More random controlled trials (RCTs) and follow-
up should be conducted to prove safety and efficacy, as well as alleviate concerns based 
on ethical issues. Currently, the application of CRISPR-Cas in the field of the musculo-
skeletal system is mostly focused on rheumatoid arthritis with synovial membrane dam-
age and various types of bone tumors. Reasonable use of relevant vectors to knock down 
disease-causing genes or overexpress antagonist genes to achieve eradication at the tran-
scriptional level and significantly improve the efficacy in inflammatory or immune dis-
eases and obtain specific phenotypes by knocking down deserve further research effort. 
Although OA is affected by multiple factors, the relevant target factors are being gradu-
ally and one by one validated. Broadening the boundaries of OA gene therapy beyond 
these avenues holds broad prospects and great research value.
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